Skip to main content

Molecular Structure and Association Behavior of Petroleum Asphaltene

  • Chapter
  • First Online:
Structure and Modeling of Complex Petroleum Mixtures

Part of the book series: Structure and Bonding ((STRUCTURE,volume 168))

Abstract

Asphaltenes, the most polar fraction in crude oil, are critical to all aspects of petroleum utilization. The strong interactions between asphaltenes lead to various levels of aggregation, which is responsible for a variety of transportation and upgrading problems. The structure and aggregation of asphaltene have received worldwide concerns, and a lot of efforts have been made to characterize asphaltene aggregates and related phenomena. The complexity of asphaltene composition makes it difficult to understand the true nature of aggregation. Advanced instruments have been applied to characterize the structure of asphaltenes and its aggregates and also their association behavior. The recent approaches on both analytical measurement and modeling lead to new insights into asphaltene structure and aggregation processes. This has led to new aggregate architecture and aggregation mechanisms. Modeling approaches were also used to predict association energies, aggregate size distribution, and phase behavior. A lot of model compounds have been synthesized or built on the computer to help understand the interaction between molecules. The results challenged the traditional view that heavy petroleum and asphaltene are ultra-large molecules. The asphaltenes are composed of numerous small molecules with strong molecular interactions which form complex nanoaggregates. In this review, we make a brief summary of the recent progress on molecular aggregation of asphaltene and discuss new theories, discoveries, and ongoing debates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vafaie-Sefti M, Mousavi-Dehghani SA (2006) Application of association theory to the prediction of asphaltene deposition: deposition due to natural depletion and miscible gas injection processes in petroleum reservoirs. Fluid Phase Equilib 247:182–189

    Article  CAS  Google Scholar 

  2. Akbarzadeh K, Hammami A, Kharrat A, Zhang D, Allenson S, Creek J, Kabir S, Jamaluddin AJ, Marshall AG, Rodgers RP, Mullins OC, Solbakken T (2007) Asphaltenes-problematic but rich in potential. Oilfield Rev 19:22–43

    CAS  Google Scholar 

  3. Hayduk W, Buckley WD (1972) Effect of molecular size and shape on diffusivity in dilute liquid solutions. Chem Eng Sci 27:1997–2003

    Article  CAS  Google Scholar 

  4. Hoshyargar V, Ashrafizadeh SN (2013) Optimization of flow parameters of heavy crude oil-in-water emulsions through pipelines. Ind Eng Chem Res 52:1600–1611

    Article  CAS  Google Scholar 

  5. Hashmi SM, Quintiliano LA, Firoozabadi A (2010) Polymeric dispersants delay sedimentation in colloidal asphaltene suspensions. Langmuir 26:8021–8029

    Article  CAS  Google Scholar 

  6. Zhang X, Chodakowski M, Shaw JM (2005) Impact of multiphase behavior on coke deposition in a commercial hydrotreating catalyst under sedimentation conditions. Energy Fuel 19:1405–1411

    Article  CAS  Google Scholar 

  7. Jian C, Tang T, Bhattacharjee S (2014) Molecular dynamics investigation on the aggregation of Violanthrone78-based model asphaltenes in toluene. Energy Fuel 28:3604–3613

    Article  CAS  Google Scholar 

  8. Mullins OC (2010) The modified Yen model. Energy Fuel 24:2179–2207

    Article  CAS  Google Scholar 

  9. Buckley JS (2012) Asphaltene deposition. Energy Fuel 26:4086–4090

    Article  CAS  Google Scholar 

  10. Akbarzadeh K, Hammami A, Kharrat A, Zhang D, Allenson S, Creek J, Kabir S, Jamaluddin A, Marshall AG, Rodgers RP, Mullins OC, Solbakken T (2007) Asphaltenes-problematic but rich in potential. Oilfield Rev 19:22–43

    CAS  Google Scholar 

  11. Meeks AC, Goldfarb IJ (1967) Time dependence and drop size effects in the determination of number-average molecular weight by vapor pressure osmometry. Anal Chem 39:908–911

    Article  CAS  Google Scholar 

  12. Wachter AH, Simon W (1969) Molecular weight determination of polystyrene standards by vapor pressure osmometry. Anal Chem 41:90–94

    Article  CAS  Google Scholar 

  13. Myers ME, Swarin SJ, Nellis BL (1979) Automated vapor pressure osmometer for determining the molecular weight of polymers. Anal Chem 51:1883–1885

    Article  CAS  Google Scholar 

  14. Ignasiak T, Strausz OP, Montgomery DS (1977) Oxygen distribution and hydrogen bonding in Athabasca asphaltene. Fuel 56:359–365

    Article  CAS  Google Scholar 

  15. Yarranton HW, Alboudwarej H, Jakher R (2000) Investigation of asphaltene association with vapor pressure osmometry and interfacial tension measurements. Ind Eng Chem Res 39:2916–2924

    Article  CAS  Google Scholar 

  16. Agrawala M, Yarranton HW (2001) An asphaltene association model analogous to linear polymerization. Ind Eng Chem Res 40:4664–4672

    Article  CAS  Google Scholar 

  17. Bressler DC, Wang J, Gawrys KL, Gray MR, Kilpatrick PK, Yarranton HW (2005) Association behavior of pyrene compounds as models for asphaltenes. Energy Fuel 19:1268–1271

    Article  CAS  Google Scholar 

  18. Yarranton HW, Fox WA, Svrcek WY (2007) Effect of resins on asphaltene self-association and solubility. Can J Chem Eng 85:635–642

    Article  CAS  Google Scholar 

  19. Zhang L, Shi Q, Zhao C, Zhang N, Chung KH, Xu C, Zhao S (2013) Hindered stepwise aggregation model for molecular weight determination of heavy petroleum fractions by vapor pressure osmometry (VPO). Energy Fuel 27:1331–1336

    Article  CAS  Google Scholar 

  20. Zhang L, Zhao S, Xu Z, Chung KH, Zhao C, Zhang N, Xu C, Shi Q (2014) Molecular weight and aggregation of heavy petroleum fractions measured by vapor pressure osmometry and a hindered stepwise aggregation model. Energy Fuel 28:6179–6187

    Article  CAS  Google Scholar 

  21. Trejo F, Ancheyta J, Morgan TJ, Herod AA, Kandiyoti R (2007) Characterization of asphaltenes from hydrotreated products by SEC, LDMS, MALDI, NMR, and XRD. Energy Fuel 21:2121–2128

    Article  CAS  Google Scholar 

  22. Tanaka R, Sato S, Takanohashi T, Hunt JE, Winans RE (2004) Analysis of the molecular weight distribution of petroleum asphaltenes using laser desorption-mass spectrometry. Energy Fuel 18:1405–1413

    Article  CAS  Google Scholar 

  23. Pomerantz AE, Hammond MR, Morrow AL, Mullins OC, Zare RN (2008) Two-step laser mass spectrometry of asphaltenes. J Am Chem Soc 130:7216–7217

    Article  CAS  Google Scholar 

  24. Wu Q, Pomerantz AE, Mullins OC, Zare RN (2013) Laser-based mass spectrometric determination of aggregation numbers for petroleum- and coal-derived asphaltenes. Energy Fuel 28:475–482

    Article  CAS  Google Scholar 

  25. Wu Q, Pomerantz AE, Mullins OC, Zare RN (2013) Minimization of fragmentation and aggregation by laser desorption laser ionization mass spectrometry. J Am Soc Mass Spectrom 24:1116–1122

    Article  CAS  Google Scholar 

  26. Qian K, Mennito AS, Edwards KE, Ferrughelli DT (2008) Observation of vanadyl porphyrins and sulfur-containing vanadyl porphyrins in a petroleum asphaltene by atmospheric pressure photonionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 22:2153–2160

    Article  CAS  Google Scholar 

  27. Qian K, Edwards KE, Siskin M, Olmstead WN, Mennito AS, Dechert GJ, Hoosain NE (2007) Desorption and ionization of heavy petroleum molecules and measurement of molecular weight distributions. Energy Fuel 21:1042–1047

    Article  CAS  Google Scholar 

  28. Klein GC, Kim S, Rodgers RP, Marshall AG, Yen A, Asomaning S (2006) Mass spectral analysis of asphaltenes. I. Compositional differences between pressure-drop and solvent-drop asphaltenes determined by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuel 20:1965–1972

    Article  CAS  Google Scholar 

  29. McKenna AM, Donald LJ, Fitzsimmons JE, Juyal P, Spicer V, Standing KG, Marshall AG, Rodgers RP (2013) Heavy petroleum composition. 3. Asphaltene aggregation. Energy Fuel 27:1246–1256

    Article  CAS  Google Scholar 

  30. Peng PA, Fu J, Sheng G, Morales-Izquierdo A, Lown EM, Strausz OP (1999) Ruthenium-ions-catalyzed oxidation of an immature asphaltene: structural features and biomarker distribution. Energy Fuel 13:266–277

    Article  CAS  Google Scholar 

  31. Peng PA, Morales-Izquierdo A, Hogg A, Strausz OP (1997) Molecular structure of Athabasca asphaltene: sulfide, ether, and ester linkages. Energy Fuel 11:1171–1187

    Article  CAS  Google Scholar 

  32. Camacho-Bragado GA, Santiago P, Marin-Almazo M, Espinosa M, Romero ET, Murgich J, Rodriguez Lugo V, Lozada-Cassou M, Jose-Yacaman M (2002) Fullerenic structures derived from oil asphaltenes. Carbon 40:2761–2766

    Article  CAS  Google Scholar 

  33. Sharma A, Groenzin H, Tomita A, Mullins OC (2002) Probing order in asphaltenes and aromatic ring systems by HRTEM. Energy Fuel 16:490–496

    Article  CAS  Google Scholar 

  34. Sharma A, Mullins O (2007) Insights into molecular and aggregate structures of asphaltenes using HRTEM. Springer, New York, pp 205–229

    Google Scholar 

  35. Qian K, Robbins WK, Hughey CA, Cooper HJ, Rodgers RP, Marshall AG (2001) Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuel 15:1505–1511

    Article  CAS  Google Scholar 

  36. Qian K, Rodgers RP, Hendrickson CL, Emmett MR, Marshall AG (2001) Reading chemical fine print: resolution and identification of 3000 nitrogen-containing aromatic compounds from a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of heavy petroleum crude oil. Energy Fuel 15:492–498

    Article  CAS  Google Scholar 

  37. Marshall AG, Rodgers RP (2003) Petroleomics: the next grand challenge for chemical analysis. Acc Chem Res 37:53–59

    Article  CAS  Google Scholar 

  38. Zhan D, Fenn JB (2000) Electrospray mass spectrometry of fossil fuels1. Int J Mass Spectrom 194:197–208

    Article  CAS  Google Scholar 

  39. Qian K, Edwards KE, Diehl JH, Green LA (2004) Fundamentals and applications of electrospray ionization mass spectrometry for petroleum characterization. Energy Fuel 18:1784–1791

    Article  CAS  Google Scholar 

  40. Sabbah H, Morrow AL, Pomerantz AE, Zare RN (2011) Evidence for island structures as the dominant architecture of asphaltenes. Energy Fuel 25:1597–1604

    Article  CAS  Google Scholar 

  41. Qian K, Edwards KE, Mennito AS, Freund H, Saeger RB, Hickey KJ, Francisco MA, Yung C, Chawla B, Wu C, Kushnerick JD, Olmstead WN (2012) Determination of structural building blocks in heavy petroleum systems by collision-induced dissociation Fourier transform Ion cyclotron resonance mass spectrometry. Anal Chem 84:4544–4551

    Article  CAS  Google Scholar 

  42. Podgorski DC, Corilo YE, Nyadong L, Lobodin VV, Bythell BJ, Robbins WK, McKenna AM, Marshall AG, Rodgers RP (2012) Heavy petroleum composition. 5. Compositional and structural continuum of petroleum revealed. Energy Fuel 27:1268–1276

    Article  CAS  Google Scholar 

  43. Zhang L, Zhang Y, Zhao S, Xu C, Chung K, Shi Q (2013) Characterization of heavy petroleum fraction by positive-ion electrospray ionization FT-ICR mass spectrometry and collision induced dissociation: bond dissociation behavior and aromatic ring architecture of basic nitrogen compounds. Sci China Chem 56:874–882

    Article  CAS  Google Scholar 

  44. Shattock TR, Arora KK, Vishweshwar P, Zaworotko MJ (2008) Hierarchy of supramolecular synthons: persistent carboxylic acid · · · pyridine hydrogen bonds in cocrystals that also contain a hydroxyl moiety. Cryst Growth Des 8:4533–4545

    Article  CAS  Google Scholar 

  45. Mohamed S, Tocher DA, Vickers M, Karamertzanis PG, Price SL (2009) Salt or cocrystal? A new series of crystal structures formed from simple pyridines and carboxylic acids. Cryst Growth Des 9:2881–2889

    Article  CAS  Google Scholar 

  46. Gray MR, Tykwinski RR, Stryker JM, Tan X (2011) Supramolecular assembly model for aggregation of petroleum asphaltenes. Energy Fuel 25:3125–3134

    Article  CAS  Google Scholar 

  47. Östlund J-A, Nyden M, Auflem IH, Sjoblom J (2003) Interactions between asphaltenes and naphthenic acids. Energy Fuel 17:113–119

    Article  CAS  Google Scholar 

  48. Tan X, Fenniri H, Gray MR (2009) Water enhances the aggregation of model asphaltenes in solution via hydrogen bonding. Energy Fuel 23:3687–3693

    Article  CAS  Google Scholar 

  49. Merino-Garcia D, Andersen SI (2004) Interaction of asphaltenes with nonylphenol by microcalorimetry. Langmuir 20:1473–1480

    Article  CAS  Google Scholar 

  50. Gawrys KL, Blankenship GA, Kilpatrick PK (2006) On the distribution of chemical properties and aggregation of solubility fractions in asphaltenes. Energy Fuel 20:705–714

    Article  CAS  Google Scholar 

  51. Goual L, Sedghi M, Wang X, Zhu Z (2014) Asphaltene aggregation and impact of alkylphenols. Langmuir 30:5394–5403

    Article  CAS  Google Scholar 

  52. Da Costa LM, Stoyanov SR, Gusarov S, Tan X, Gray MR, Stryker JM, Tykwinski R, de M. Carneiro JW, Seidl PR, Kovalenko A (2011) Density functional theory investigation of the contributions of π–π stacking and hydrogen-bonding interactions to the aggregation of model asphaltene compounds. Energy Fuel 26(5):2727–2735

    Article  CAS  Google Scholar 

  53. Stoyanov SR, Yin C-X, Gray MR, Stryker JM, Gusarov S, Kovalenko A (2010) Computational and experimental study of the structure, binding preferences, and spectroscopy of nickel(II) and vanadyl porphyrins in petroleum. J Phys Chem B 114:2180–2188

    Article  CAS  Google Scholar 

  54. Dickie JP, Yen TF (1967) Macrostructures of the asphaltic fractions by various instrumental methods. Anal Chem 39:1847–1852

    Article  CAS  Google Scholar 

  55. Kuznicki T, Masliyah JH, Bhattacharjee S (2008) Molecular dynamics study of model molecules resembling asphaltene-like structures in aqueous organic solvent systems. Energy Fuel 22:2379–2389

    Article  CAS  Google Scholar 

  56. Sedghi M, Goual L, Welch W, Kubelka J (2013) Effect of asphaltene structure on association and aggregation using molecular dynamics. J Phys Chem B 117:5765–5776

    Article  CAS  Google Scholar 

  57. Castellano O, Gimon R, Soscun H (2011) Theoretical study of the σ–π and π–π interactions in heteroaromatic monocyclic molecular complexes of benzene, pyridine, and thiophene dimers: implications on the resin–asphaltene stability in crude oil. Energy Fuel 25:2526–2541

    Article  CAS  Google Scholar 

  58. Murgich J (2002) Intermolecular forces in aggregates of asphaltenes and resins. Pet Sci Technol 20:983–997

    Article  CAS  Google Scholar 

  59. Cockroft SL, Perkins J, Zonta C, Adams H, Spey SE, Low CMR, Vinter JG, Lawson KR, Urch CJ, Hunter CA (2007) Substituent effects on aromatic stacking interactions. Org Biomol Chem 5:1062–1080

    Article  CAS  Google Scholar 

  60. Prado GHC, de Klerk A (2014) Halogenation of oilsands bitumen, maltenes, and asphaltenes. Energy Fuel 28:4458–4468

    Article  CAS  Google Scholar 

  61. Yin C-X, Tan X, Müllen K, Stryker JM, Gray MR (2008) Associative π-π interactions of condensed aromatic compounds with vanadyl or nickel porphyrin complexes are not observed in the organic phase. Energy Fuel 22:2465–2469

    Article  CAS  Google Scholar 

  62. Andersen SI, Jensen JO, Speight JG (2005) X-ray diffraction of subfractions of petroleum asphaltenes. Energy Fuel 19:2371–2377

    Article  CAS  Google Scholar 

  63. Stachowiak C, Viguié J-R, Grolier J-PE, Rogalski M (2005) Effect of n-alkanes on asphaltene structuring in petroleum oils. Langmuir 21:4824–4829

    Article  CAS  Google Scholar 

  64. Wang S, Liu J, Zhang L, Masliyah J, Xu Z (2009) Interaction forces between asphaltene surfaces in organic solvents. Langmuir 26:183–190

    Article  CAS  Google Scholar 

  65. Porte G, Zhou H, Lazzeri V (2002) Reversible description of asphaltene colloidal association and precipitation. Langmuir 19:40–47

    Article  CAS  Google Scholar 

  66. Mullins OC (2009) The modified Yen model. Energy Fuel 24:2179–2207

    Article  CAS  Google Scholar 

  67. Mullins OC (2011) The asphaltenes. Annu Rev Anal Chem 4:393–418

    Article  CAS  Google Scholar 

  68. Mullins OC, Sabbah H, Eyssautier J, Pomerantz AE, Barré L, Andrews AB, Ruiz-Morales Y, Mostowfi F, McFarlane R, Goual L, Lepkowicz R, Cooper T, Orbulescu J, Leblanc RM, Edwards J, Zare RN (2012) Advances in asphaltene science and the Yen–Mullins model. Energy Fuel 26:3986–4003

    Article  CAS  Google Scholar 

  69. Mullins OC, Pomerantz AE, Zuo JY, Dong C (2014) Downhole fluid analysis and asphaltene science for petroleum reservoir evaluation. Ann Rev Chem Biomol Eng 5:325–345

    Article  CAS  Google Scholar 

  70. Alboudwarej H, Beck J, Svrcek WY, Yarranton HW, Akbarzadeh K (2002) Sensitivity of asphaltene properties to separation techniques. Energy Fuel 16:462–469

    Article  CAS  Google Scholar 

  71. Barcenas M, Duda Y (2007) Irreversible colloidal agglomeration in presence of associative inhibitors: computer simulation study. Phys Lett A 365:454–457

    Article  CAS  Google Scholar 

  72. Barcenas M, Duda Y (2009) Inhibition of irreversible cluster–cluster aggregation of colloids. Colloids Surf A Physicochem Eng Asp 334:137–141

    Article  CAS  Google Scholar 

  73. Barcenas M, Orea P (2011) Molar-mass distributions of asphaltenes in the presence of inhibitors: experimental and computer calculations. Energy Fuel 25:2100–2108

    Article  CAS  Google Scholar 

  74. Nellensteyn F (1924) The constitution of asphalt. J Inst Pet Technol 10:311–323

    CAS  Google Scholar 

  75. Pfeiffer JP, Saal RNJ (1940) Asphaltic bitumen as colloid system. J Phys Chem 44:139–149

    Article  CAS  Google Scholar 

  76. Sheu EY, De Tar MM, Storm DA, DeCanio SJ (1992) Aggregation and kinetics of asphaltenes in organic solvents. Fuel 71:299–302

    Article  CAS  Google Scholar 

  77. Andersen SI, Christensen SD (1999) The critical micelle concentration of asphaltenes as measured by calorimetry. Energy Fuel 14:38–42

    Article  CAS  Google Scholar 

  78. Rogel E, León O, Torres G, Espidel J (2000) Aggregation of asphaltenes in organic solvents using surface tension measurements. Fuel 79:1389–1394

    Article  CAS  Google Scholar 

  79. Oh K, Ring TA, Deo MD (2004) Asphaltene aggregation in organic solvents. J Colloid Interface Sci 271:212–219

    Article  CAS  Google Scholar 

  80. Mohamed RS, Ramos ACS, Loh W (1999) Aggregation behavior of two asphaltenic fractions in aromatic solvents. Energy Fuel 13:323–327

    Article  CAS  Google Scholar 

  81. Oh K, Oblad SC, Hanson FV, Deo MD (2003) Examination of asphaltenes precipitation and self-aggregation. Energy Fuel 17:508–509

    Article  CAS  Google Scholar 

  82. Merino‐Garcia D, Andersen SI (2005) Calorimetric evidence about the application of the concept of CMC to asphaltene self‐association. J Dispers Sci Technol 26:217–225

    Article  CAS  Google Scholar 

  83. Andersen SI, Speight JG (1993) Observations on the critical micelle concentration of asphaltenes. Fuel 72:1343–1344

    Article  CAS  Google Scholar 

  84. Andreatta G, Bostrom N, Mullins OC (2005) High-Q ultrasonic determination of the critical nanoaggregate concentration of asphaltenes and the critical micelle concentration of standard surfactants. Langmuir 21:2728–2736

    Article  CAS  Google Scholar 

  85. Zeng H, Song Y-Q, Johnson DL, Mullins OC (2009) Critical nanoaggregate concentration of asphaltenes by direct-current (DC) electrical conductivity. Energy Fuel 23:1201–1208

    Article  CAS  Google Scholar 

  86. Lisitza NV, Freed DE, Sen PN, Song Y-Q (2009) Study of asphaltene nanoaggregation by nuclear magnetic resonance (NMR). Energy Fuel 23:1189–1193

    Article  CAS  Google Scholar 

  87. Goual L, Sedghi M, Zeng H, Mostowfi F, McFarlane R, Mullins OC (2011) On the formation and properties of asphaltene nanoaggregates and clusters by DC-conductivity and centrifugation. Fuel 90:2480–2490

    Article  CAS  Google Scholar 

  88. Mostowfi F, Indo K, Mullins OC, McFarlane R (2009) Asphaltene nanoaggregates studied by centrifugation. Energy Fuel 23:1194–1200

    Article  CAS  Google Scholar 

  89. Goncalves S, Castillo J, Fernández A, Hung J (2004) Absorbance and fluorescence spectroscopy on the aggregation behavior of asphaltene-toluene solutions. Fuel 83:1823–1828

    Article  CAS  Google Scholar 

  90. Barre L, Simon S, Palermo T (2008) Solution properties of asphaltenes. Langmuir 24:3709–3717

    Article  CAS  Google Scholar 

  91. Derakhshesh M, Bergmann A, Gray MR (2012) Occlusion of polyaromatic compounds in asphaltene precipitates suggests porous nanoaggregates. Energy Fuel 27:1748–1751

    Article  CAS  Google Scholar 

  92. Acevedo S, Cordero T JM, Carrier H, Bouyssiere B, Lobinski R (2009) Trapping of paraffin and other compounds by asphaltenes detected by laser desorption ionization-time of flight mass spectrometry (LDI-TOF MS): role of A1 and A2 asphaltene fractions in this trapping. Energy Fuel 23:842–848

    Article  CAS  Google Scholar 

  93. Liao Z, Graciaa A, Geng A, Chrostowska A, Creux P (2006) A new low-interference characterization method for hydrocarbons occluded inside asphaltene structures. Appl Geochem 21:833–838

    Article  CAS  Google Scholar 

  94. Gawrys KL, Blankenship GA, Kilpatrick PK (2006) Solvent entrainment in and flocculation of asphaltenic aggregates probed by small-angle neutron scattering. Langmuir 22:4487–4497

    Article  CAS  Google Scholar 

  95. Yang C, Liao Z, Zhang L, Creux P (2008) Some biogenic-related compounds occluded inside asphaltene aggregates. Energy Fuel 23:820–827

    Article  CAS  Google Scholar 

  96. Zhao J, Liao Z, Zhang L, Creux P, Yang C, Chrostowska A, Zhang H, Graciaa A (2010) Comparative studies on compounds occluded inside asphaltenes hierarchically released by increasing amounts of H2O2/CH3COOH. Appl Geochem 25:1330–1338

    Article  CAS  Google Scholar 

  97. Zielinski L, Saha I, Freed DE, Hürlimann MD, Liu Y (2010) Probing asphaltene aggregation in native crude oils with low-field NMR. Langmuir 26:5014–5021

    Article  CAS  Google Scholar 

  98. Verruto VJ, Kilpatrick PK (2007) Preferential solvent partitioning within asphaltenic aggregates dissolved in binary solvent mixtures. Energy Fuel 21:1217–1225

    Article  CAS  Google Scholar 

  99. Savvidis TG, Fenistein D, Barré L, Béhar E (2001) Aggregated structure of flocculated asphaltenes. AICHE J 47:206–211

    Article  CAS  Google Scholar 

  100. Zajac GW, Sethi NK, Joseph JT, Sellis D, Pareiss C (1977) Maya petroleum asphaltene imaging by scanning tunneling microscopy: verification of structure from 13C and proton nuclear magnetic resonance. Am Chem Soc Div Fuel Chem 42:423–426

    Google Scholar 

  101. Groenzin H, Mullins OC (2000) Molecular size and structure of asphaltenes from various sources. Energy Fuel 14:677–684

    Article  CAS  Google Scholar 

  102. Badre S, Carla Goncalves C, Norinaga K, Gustavson G, Mullins OC (2006) Molecular size and weight of asphaltene and asphaltene solubility fractions from coals, crude oils and bitumen. Fuel 85:1–11

    Article  CAS  Google Scholar 

  103. Andrews AB, Guerra RE, Mullins OC, Sen PN (2006) Diffusivity of asphaltene molecules by fluorescence correlation spectroscopy. J Phys Chem A 110:8093–8097

    Article  CAS  Google Scholar 

  104. Kawashima H, Takanohashi T, Iino M, Matsukawa S (2008) Determining asphaltene aggregation in solution from diffusion coefficients as determined by pulsed-field gradient spin − echo 1H NMR. Energy Fuel 22:3989–3993

    Article  CAS  Google Scholar 

  105. Wargadalam VJ, Norinaga K, Iino M (2002) Size and shape of a coal asphaltene studied by viscosity and diffusion coefficient measurements. Fuel 81:1403–1407

    Article  CAS  Google Scholar 

  106. Wargadalam VJ, Norinaga K, Iino M (2001) Hydrodynamic properties of coal extracts in pyridine. Energy Fuel 15:1123–1128

    Article  CAS  Google Scholar 

  107. Nortz RL, Baltus RE, Rahimi P (1990) Determination of the macroscopic structure of heavy oils by measuring hydrodynamic properties. Ind Eng Chem Res 29:1968–1976

    Article  CAS  Google Scholar 

  108. Sakai M, Sasaki K, Inagaki M (1983) Hydrodynamic studies of dilute pitch solutions: the shape and size of pitch molecules. Carbon 21:593–596

    Article  CAS  Google Scholar 

  109. Chen Z, Zhao S, Xu Z, Gao J, Xu C (2011) Molecular size and size distribution of petroleum residue. Energy Fuel 25:2109–2114

    Article  CAS  Google Scholar 

  110. Chen Z, Liu J, Wu Y, Xu Z, Liu X, Zhao S, Xu C (2015) Polydisperse size distribution of monomers and aggregates of sulfur-containing compounds in petroleum residue fractions. Energy Fuel 29(8):4730–4737

    Article  CAS  Google Scholar 

  111. Eyssautier J, Frot D, Barré L (2012) Structure and dynamic properties of colloidal asphaltene aggregates. Langmuir 28:11997–12004

    Article  CAS  Google Scholar 

  112. Xu Y, Koga Y, Strausz OP (1995) Characterization of Athabasca asphaltenes by small-angle X-ray scattering. Fuel 74:960–964

    Article  CAS  Google Scholar 

  113. Tanaka R, Sato E, Hunt JE, Winans RE, Sato S, Takanohashi T (2004) Characterization of asphaltene aggregates using X-ray diffraction and small-angle X-ray scattering. Energy Fuel 18:1118–1125

    Article  CAS  Google Scholar 

  114. Eyssautier JL, Levitz P, Espinat D, Jestin J, Gummel JRM, Grillo I, Barré LC (2011) Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering. J Phys Chem B 115:6827–6837

    Article  CAS  Google Scholar 

  115. Amundaraín Hurtado JL, Chodakowski M, Long B, Shaw JM (2011) Characterization of physically and chemically separated Athabasca asphaltenes using small-angle X-ray scattering. Energy Fuel 25:5100–5112

    Article  CAS  Google Scholar 

  116. Goual L, Abudu A (2009) Predicting the adsorption of asphaltenes from their electrical conductivity. Energy Fuel 24:469–474

    Article  CAS  Google Scholar 

  117. Goual L (2009) Impedance spectroscopy of petroleum fluids at low frequency. Energy Fuel 23:2090–2094

    Article  CAS  Google Scholar 

  118. Derakhshesh M, Gray MR, Dechaine GP (2013) Dispersion of asphaltene nanoaggregates and the role of Rayleigh scattering in the absorption of visible electromagnetic radiation by these nanoaggregates. Energy Fuel 27:680–693

    Article  CAS  Google Scholar 

  119. Dechaine GP, Gray MR (2010) Membrane diffusion measurements do not detect exchange between asphaltene aggregates and solution phase. Energy Fuel 25:509–523

    Article  CAS  Google Scholar 

  120. Ruiz-Morales Y, Wu X, Mullins OC (2007) Electronic absorption edge of crude oils and asphaltenes analyzed by molecular orbital calculations with optical spectroscopy. Energy Fuel 21:944–952

    Article  CAS  Google Scholar 

  121. Ruiz-Morales Y, Mullins OC (2008) Measured and simulated electronic absorption and emission spectra of asphaltenes. Energy Fuel 23:1169–1177

    Article  CAS  Google Scholar 

  122. Bouhadda Y, Bormann D, Sheu E, Bendedouch D, Krallafa A, Daaou M (2007) Characterization of algerian Hassi-Messaoud asphaltene structure using Raman spectrometry and X-ray diffraction. Fuel 86:1855–1864

    Article  CAS  Google Scholar 

  123. Barrera DM, Ortiz DP, Yarranton HW (2013) Molecular weight and density distributions of asphaltenes from crude oils. Energy Fuel 27:2474–2487

    Article  CAS  Google Scholar 

  124. Durand E, Clemancey M, Lancelin J-M, Verstraete J, Espinat D, Quoineaud A-A (2009) Aggregation states of asphaltenes: evidence of two chemical behaviors by 1H diffusion-ordered spectroscopy nuclear magnetic resonance. J Phys Chem C 113:16266–16276

    Article  CAS  Google Scholar 

  125. Durand E, Clemancey M, Lancelin J-M, Verstraete J, Espinat D, Quoineaud A-A (2010) Effect of chemical composition on asphaltenes aggregation. Energy Fuel 24:1051–1062

    Article  CAS  Google Scholar 

  126. Headen TF, Boek ES, Stellbrink JR, Scheven UM (2009) Small angle neutron scattering (SANS and V-SANS) study of asphaltene aggregates in crude oil. Langmuir 25:422–428

    Article  CAS  Google Scholar 

  127. Yarranton HW, Ortiz DP, Barrera DM, Baydak EN, Barré L, Frot D, Eyssautier J, Zeng H, Xu Z, Dechaine G, Becerra M, Shaw JM, McKenna AM, Mapolelo MM, Bohne C, Yang Z, Oake J (2013) On the size distribution of self-associated asphaltenes. Energy Fuel 27:5083–5106

    Article  CAS  Google Scholar 

  128. Korb J-P, Louis-Joseph A, Benamsili L (2013) Probing structure and dynamics of bulk and confined crude oils by multiscale NMR spectroscopy, diffusometry, and relaxometry. J Phys Chem B 117:7002–7014

    Article  CAS  Google Scholar 

  129. Mullins OC, Seifert DJ, Zuo JY, Zeybek M (2012) Clusters of asphaltene nanoaggregates observed in oilfield reservoirs. Energy Fuel 27:1752–1761

    Article  CAS  Google Scholar 

  130. Fenistein D, Barré L (2001) Experimental measurement of the mass distribution of petroleum asphaltene aggregates using ultracentrifugation and small-angle X-ray scattering. Fuel 80:283–287

    Article  CAS  Google Scholar 

  131. Gawrys KL, Kilpatrick PK (2005) Asphaltenic aggregates are polydisperse oblate cylinders. J Colloid Interface Sci 288:325–334

    Article  CAS  Google Scholar 

  132. Sheu EY, Acevedo S (2001) Effect of pressure and temperature on colloidal structure of furrial crude oil. Energy Fuel 15:702–707

    Article  CAS  Google Scholar 

  133. Roux J-N, Broseta D, Demé B (2001) SANS study of asphaltene aggregation: concentration and solvent quality effects. Langmuir 17:5085–5092

    Article  CAS  Google Scholar 

  134. Espinat D, Fenistein D, Barre L, Frot D, Briolant Y (2004) Effects of temperature and pressure on asphaltenes agglomeration in toluene. A light, X-ray, and neutron scattering investigation. Energy Fuel 18:1243–1249

    Article  CAS  Google Scholar 

  135. Eyssautier J, Hénaut I, Levitz P, Espinat D, Barré L (2011) Organization of asphaltenes in a vacuum residue: a small-angle X-ray scattering (SAXS)–viscosity approach at high temperatures. Energy Fuel 26:2696–2704

    Article  CAS  Google Scholar 

  136. Acevedo S, García LA, Rodríguez P (2012) Changes of diameter distribution with temperature measured for asphaltenes and their fractions A1 and A2. Impact of these measurements in colloidal and solubility issues of asphaltenes. Energy Fuel 26:1814–1819

    Article  CAS  Google Scholar 

  137. Fossen M, Kallevik H, Knudsen KD, Sjöblom J (2007) Asphaltenes precipitated by a two-step precipitation procedure. 1. Interfacial tension and solvent properties. Energy Fuel 21:1030–1037

    Article  CAS  Google Scholar 

  138. León O, Contreras E, Rogel E, Dambakli G, Acevedo S, Carbognani L, Espidel J (2002) Adsorption of native resins on asphaltene particles: a correlation between adsorption and activity. Langmuir 18:5106–5112

    Article  CAS  Google Scholar 

  139. Kraiwattanawong K, Fogler HS, Gharfeh SG, Singh P, Thomason WH, Chavadej S (2009) Effect of asphaltene dispersants on aggregate size distribution and growth. Energy Fuel 23:1575–1582

    Article  CAS  Google Scholar 

  140. Pacheco-Sánchez JH, Zaragoza IP, Martínez-Magadán JM (2003) Asphaltene aggregation under vacuum at different temperatures by molecular dynamics. Energy Fuel 17:1346–1355

    Article  CAS  Google Scholar 

  141. Murgich J, Jesús M, Aray Y (1996) Molecular recognition and molecular mechanics of micelles of some model asphaltenes and resins. Energy Fuel 10:68–76

    Article  CAS  Google Scholar 

  142. Headen TF, Boek ES, Skipper NT (2009) Evidence for asphaltene nanoaggregation in toluene and heptane from molecular dynamics simulations. Energy Fuel 23:1220–1229

    Article  CAS  Google Scholar 

  143. Jian C, Tang T, Bhattacharjee S (2013) Probing the effect of side-chain length on the aggregation of a model asphaltene using molecular dynamics simulations. Energy Fuel 27:2057–2067

    Article  CAS  Google Scholar 

  144. Zhang L, Greenfield ML (2007) Molecular orientation in model asphalts using molecular simulation. Energy Fuel 21:1102–1111

    Article  CAS  Google Scholar 

  145. Carauta ANM, Seidl PR, Chrisman ECAN, Correia JCG, Menechini PDO, Silva DM, Leal KZ, de Menezes SMC, de Souza WF, Teixeira MAG (2005) Modeling solvent effects on asphaltene dimers. Energy Fuel 19:1245–1251

    Article  CAS  Google Scholar 

  146. Headen TF, Boek ES (2010) Molecular dynamics simulations of asphaltene aggregation in supercritical carbon dioxide with and without limonene. Energy Fuel 25:503–508

    Article  CAS  Google Scholar 

  147. Alvarez-Ramirez F, Ramirez-Jaramillo E, Ruiz-Morales Y (2005) Calculation of the interaction potential curve between asphaltene − asphaltene, asphaltene − resin, and resin − resin systems using density functional theory. Energy Fuel 20:195–204

    Article  CAS  Google Scholar 

  148. Ortega-Rodríguez A, Cruz SA, Gil-Villegas A, Guevara-Rodríguez F, Lira-Galeana C (2003) Molecular view of the asphaltene aggregation behavior in asphaltene − resin mixtures. Energy Fuel 17:1100–1108

    Article  CAS  Google Scholar 

  149. Moreira da Costa L, Stoyanov SR, Gusarov S, Seidl PR, Walkimar de M. Carneiro J, Kovalenko A (2014) Computational study of the effect of dispersion interactions on the thermochemistry of aggregation of fused polycyclic aromatic hydrocarbons as model asphaltene compounds in solution. J Phys Chem A 118:896–908

    Article  CAS  Google Scholar 

  150. Yen TF, Chilingarian GV (2000) Asphaltenes and asphalts, vol 2. Elsevier, Amsterdam

    Google Scholar 

  151. Rogel E, Carbognani L (2003) Density estimation of asphaltenes using molecular dynamics simulations. Energy Fuel 17:378–386

    Article  CAS  Google Scholar 

  152. Aray Y, Hernández-Bravo R, Parra JG, Rodríguez J, Coll DS (2011) Exploring the structure–solubility relationship of asphaltene models in toluene, heptane, and amphiphiles using a molecular dynamic atomistic methodology. J Phys Chem A 115:11495–11507

    Article  CAS  Google Scholar 

  153. Mikami Y, Liang Y, Matsuoka T, Boek ES (2013) Molecular dynamics simulations of asphaltenes at the oil–water interface: from nanoaggregation to thin-film formation. Energy Fuel 27:1838–1845

    Article  CAS  Google Scholar 

  154. Gao F, Xu Z, Liu G, Yuan S (2014) Molecular dynamics simulation: the behavior of asphaltene in crude oil and at the oil/water interface. Energy Fuel 28:7368–7376

    Article  CAS  Google Scholar 

  155. Teklebrhan RB, Ge L, Bhattacharjee S, Xu Z, Sjöblom J (2014) Initial partition and aggregation of uncharged polyaromatic molecules at the oil–water interface: a molecular dynamics simulation study. J Phys Chem B 118:1040–1051

    Article  CAS  Google Scholar 

  156. Rogel E, León O (2001) Study of the adsorption of alkyl-benzene-derived amphiphiles on an asphaltene surface using molecular dynamics simulations. Energy Fuel 15:1077–1086

    Article  CAS  Google Scholar 

  157. Zhang S-F, Sun LL, Xu J-B, Wu H, Wen H (2010) Aggregate structure in heavy crude oil: using a dissipative particle dynamics based mesoscale platform. Energy Fuel 24:4312–4326

    Article  CAS  Google Scholar 

  158. Alvarez F, Flores EA, Castro LV, Hernández JG, López A, Vázquez F (2010) Dissipative particle dynamics (DPD) study of crude oil–water emulsions in the presence of a functionalized Co-polymer. Energy Fuel 25:562–567

    Article  CAS  Google Scholar 

  159. Wang S, Xu J, Wen H (2014) The aggregation and diffusion of asphaltenes studied by GPU-accelerated dissipative particle dynamics. Comput Phys Commun 185:3069–3078

    Article  CAS  Google Scholar 

  160. Wiehe IA, Kennedy RJ (2000) The oil compatibility model and crude oil incompatibility. Energy Fuel 14:56–59

    Article  CAS  Google Scholar 

  161. Wiehe IA, Kennedy RJ (1999) Application of the oil compatibility model to refinery streams. Energy Fuel 14:60–63

    Article  CAS  Google Scholar 

  162. Wiehe IA, Kennedy RJ, Dickakian G (2001) Fouling of nearly incompatible oils. Energy Fuel 15:1057–1058

    Article  CAS  Google Scholar 

  163. Jackson G, Chapman WG, Gubbins KE (1988) Phase equilibria of associating fluids: spherical molecules with multiple bonding sites. Mol Phys 65:1–31

    Article  CAS  Google Scholar 

  164. Chapman WG, Gubbins KE, Jackson G, Radosz M (1989) SAFT: equation-of-state solution model for associating fluids. Fluid Phase Equilib 52:31–38

    Article  CAS  Google Scholar 

  165. Chapman WG, Gubbins KE, Jackson G, Radosz M (1990) New reference equation of state for associating liquids. Ind Eng Chem Res 29:1709–1721

    Article  CAS  Google Scholar 

  166. Gross J, Sadowski G (2001) Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res 40:1244–1260

    Article  CAS  Google Scholar 

  167. Ting P, Gonzalez D, Hirasaki G, Chapman W (2007) Application of the PC-SAFT equation of state to asphaltene phase behavior. Springer, New York, pp 301–327

    Google Scholar 

  168. Vargas FM, Gonzalez DL, Hirasaki GJ, Chapman WG (2009) Modeling asphaltene phase behavior in crude Oil systems using the perturbed chain form of the statistical associating fluid theory (PC-SAFT) equation of state. Energy Fuel 23:1140–1146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the supports by the National Natural Science Foundation of China (NSFC) (no. 21106183, 21476257, U1162204, and U1463207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linzhou Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, Z., Zhang, L., Zhao, S., Shi, Q., Xu, C. (2015). Molecular Structure and Association Behavior of Petroleum Asphaltene. In: Xu, C., Shi, Q. (eds) Structure and Modeling of Complex Petroleum Mixtures. Structure and Bonding, vol 168. Springer, Cham. https://doi.org/10.1007/430_2015_181

Download citation

Publish with us

Policies and ethics