Skip to main content

The Electronics of CH Activation by Energy Decomposition Analysis: From Transition Metals to Main-Group Metals

  • Chapter
  • First Online:
Computational Studies in Organometallic Chemistry

Part of the book series: Structure and Bonding ((STRUCTURE,volume 167))

Abstract

Alkane CH activation is a fundamental reaction class where a metal-ligand complex reacts with a CH bond to give a metal-alkyl organometallic intermediate. CH activation reactions have been reported for a variety of transition metals and main-group metals. This chapter highlights recent quantum-mechanical studies that have used energy decomposition analysis (EDA) to provide insight into σ-coordination complexes and transition states for alkane CH activation reactions. These studies have provided new conceptual understanding of CH activation reactions and detailed insight into the physical nature and magnitude of interaction between alkanes with transition metals and main-group metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crabtree RH (1985) Chem Rev 85:245

    Article  CAS  Google Scholar 

  2. Shilov AE, Shul'pin GB (1987) Russ Chem Rev 56:442

    Article  Google Scholar 

  3. Arndtsen BA, Bergman RG (1995) Science 270:1970

    Article  CAS  Google Scholar 

  4. Crabtree RH (1995) Chem Rev 95:987

    Article  CAS  Google Scholar 

  5. Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879

    Article  CAS  Google Scholar 

  6. Stahl SS, Labinger JA, Bercaw JE (1998) Angew Chem Int Ed 37:2180

    Article  Google Scholar 

  7. Crabtree RH (2001) J Chem Soc Dalton Trans 2437

    Google Scholar 

  8. Labinger JA, Bercaw JE (2002) Nature 417:507

    Article  CAS  Google Scholar 

  9. Ritleng V, Sirlin C, Pfeffer M (2002) Chem Rev 102:1731

    Article  CAS  Google Scholar 

  10. Jones WD (2003) Acc Chem Res 36:140

    Article  CAS  Google Scholar 

  11. Goldman AS, Goldberg KI (2004) Organometallic C–H bond activation: an introduction. In: Goldman AS, Goldberg KI (eds) Activation and functionalization of C–H bonds, vol 885, ACS symposium series. Wiley, Washington, p 1

    Chapter  Google Scholar 

  12. Crabtree RH (2004) J Organomet Chem 689:4083

    Article  CAS  Google Scholar 

  13. Labinger JA (2004) J Mol Catal A Chem 220:27

    Article  CAS  Google Scholar 

  14. Hashiguchi BG, Hövelmann CH, Bischof SM, Lokare KS, Leung CH, Periana RA (2010) Methane-to-methanol conversion. In: Crabtree RH (ed) Energy production and storage: inorganic chemical strategies for a warming world, Encyclopedia of inorganic chemistry. Wiley, Chichester, p 101

    Google Scholar 

  15. Gunnoe TB (2012) In: Perez PJ (ed) Alkane C–H activation by single-site metal catalysts, vol. 38. Springer, Dordrecht, pp 1–15

    Google Scholar 

  16. Cavaliere VN, Wicker BF, Mindiola DJ (2012) Adv Organomet Chem 60:1

    CAS  Google Scholar 

  17. Conley BL, Tenn WJ III, Young KJH, Ganesh SK, Meier SK, Ziatdinov VR, Mironov O, Oxgaard J, Gonzales J, Goddard WA III, Periana RA (2006) J Mol Catal A 251:8

    Article  CAS  Google Scholar 

  18. Webb JR, Bolaño T, Gunnoe TB (2011) ChemSusChem 4:37

    Article  CAS  Google Scholar 

  19. Golisz SR, Gunnoe TB, Goddard WA III, Groves JR, Periana RA (2011) Catal Lett 141:213

    Article  CAS  Google Scholar 

  20. Hashiguchi BG, Bischof SM, Konnick MM, Periana RA (2012) Acc Chem Res 45:885

    Article  CAS  Google Scholar 

  21. Bader R (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  22. Popelier PLA (2014) The QTAIM perspective of chemical bonding. In The chemical bond. Wiley-VCH , Weinheim, pp 271–308

    Google Scholar 

  23. Weinhold F, Landis CR (2012) Discovering chemistry with natural bond orbitals. Wiley, Hoboken

    Book  Google Scholar 

  24. Bickelhaupt FM, Baerends EJ (2000) Kohn-sham DFT: predicting and understanding chemistry. In: Boyd DB, Lipkowitz KB (eds) Reviews in computational chemistry, vol 15. Wiley-VCH, New York, pp 1–86

    Chapter  Google Scholar 

  25. von Hopffgarten M, Frenking G (2012) WIREs Comput Mol Sci 2:43

    Article  Google Scholar 

  26. Lein M, Frenking G (2005) The nature of the chemical bond in the light of an energy decomposition analysis. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years. Elsevier , Amsterdam, pp 291–372

    Chapter  Google Scholar 

  27. van Zeist WJ, Bickelhaupt FM (2010) Org Biomol Chem 8:3118

    Article  Google Scholar 

  28. Frenking G, Bickelhaupt FM (2014) The EDA perspective of chemical bonding. In: Frenking G, Shaik S (eds) The chemical bond. Wiley-VCH, Weinheim, pp 121–157

    Chapter  Google Scholar 

  29. Fernández I (2014) Phys Chem Chem Phys 16:7662

    Article  Google Scholar 

  30. Fernández I, Bickelhaupt FM (2014) Chem Soc Rev 43:4953

    Article  Google Scholar 

  31. Fernández I (2014) Understanding trends in reaction barriers. In: Pignataro B (ed) Discovering the future of molecular sciences. Wiley-VCH, Weinheim, pp 165–187

    Chapter  Google Scholar 

  32. Klopman G (1968) J Am Chem Soc 90:223

    Article  CAS  Google Scholar 

  33. Salem L (1968) J Am Chem Soc 90:543

    Article  CAS  Google Scholar 

  34. Salem L (1968) J Am Chem Soc 90:553

    Article  CAS  Google Scholar 

  35. Morokuma K (1971) J Chem Phys 55:1236

    Article  CAS  Google Scholar 

  36. Ziegler T, Rauk A (1977) Theor Chim Acta 46:1

    Article  CAS  Google Scholar 

  37. ADF (2014) SCM theoretical chemistry. Vrije Universiteit, Amsterdam. http://www.scm.com

  38. Khaliullin RZ, Cobar EA, Lochan RC, Bell AT, Head-Gordon M (2007) J Phys Chem A 111:8753

    Article  CAS  Google Scholar 

  39. Khaliullin RZ, Bell AT, Head-Gordon M (2008) J Chem Phys 128:184112

    Article  Google Scholar 

  40. Walter MD, White PS, Schauer CK, Brookhart M (2013) J Am Chem Soc 135:15933

    Article  CAS  Google Scholar 

  41. Pike SD, Thompson AL, Algarra AG, Apperley DC, Macgregor SA, Weller AS (2012) Science 337:1648

    Article  CAS  Google Scholar 

  42. Bernskoetter WH, Schauer CK, Goldberg KI, Brookhart M (2009) Science 326:553

    Article  CAS  Google Scholar 

  43. Chan B, Ball GE (2013) J Chem Theory Comput 9:2199

    Article  CAS  Google Scholar 

  44. Cobar EA, Khaliullin RZ, Bergman RG, Head-Gordon M (2007) Proc Nat Acad Sci USA 104:6963

    Article  CAS  Google Scholar 

  45. Ess DH, Bischof SM, Oxgaard J, Periana RA, Goddard WA III (2008) Organometallics 27:6440

    Article  CAS  Google Scholar 

  46. Ess DH, Gunnoe TB, Cundari TR, Goddard WA III, Periana RA (2010) Organometallics 29:6801

    Article  CAS  Google Scholar 

  47. Pike SD, Chadwick FM, Rees NH, Scott MP, Weller AS, Kramer T, Macgregor SA (2015) J Am Chem Soc 137:820

    Article  CAS  Google Scholar 

  48. Balcells D, Clot E, Eisenstein O (2010) Chem Rev 110:749

    Article  CAS  Google Scholar 

  49. Ackermann L (2011) Chem Rev 111:1315

    Article  CAS  Google Scholar 

  50. Ng SM, Lam WH, Mak CC, Tsang CW, Jia G, Lin Z, Lau CP (2003) Organometallics 22:641

    Article  CAS  Google Scholar 

  51. Lam WH, Jia G, Lin Z, Lau CP, Eisenstein O (2003) Chem Eur J 9:2775

    Article  CAS  Google Scholar 

  52. Webster CE, Fan Y, Hall MB, Kunz D, Hartwig JF (2003) J Am Chem Soc 125:858

    Article  CAS  Google Scholar 

  53. Hartwig JF, Cook KS, Hapke M, Incarvito CD, Fan Y, Webster CE, Hall MB (2005) J Am Chem Soc 127:2538

    Article  CAS  Google Scholar 

  54. Perutz RN, Sabo-Etienne S (2007) Angew Chem Int Ed 46:2578

    Article  CAS  Google Scholar 

  55. Vastine BA, Hall MB (2007) J Am Chem Soc 129:12068

    Article  CAS  Google Scholar 

  56. Ryabov AD (1990) Chem Rev 90:403

    Article  CAS  Google Scholar 

  57. Ess DH, Goddard WA III, Periana RA (2010) Organometallics 29:6459

    Article  CAS  Google Scholar 

  58. Vidossich P, Ujaque G, Lledós A (2012) Chem Commun 48:1979

    Article  CAS  Google Scholar 

  59. Pardue DB, Gustafson SJ, Periana RA, Ess DH, Cundari TR (2013) Comput Theor Chem 1019:85

    Article  CAS  Google Scholar 

  60. Streitwieser A Jr, Ciuffarin E, Hammons JH (1967) J Am Chem Soc 89:63

    Article  CAS  Google Scholar 

  61. Diefenbach A, de Jong GT, Bickelhaupt FM (2005) J Chem Theory Comput 1:286

    Article  CAS  Google Scholar 

  62. Wolters LP, van Zeist WJ, Bickelhaupt FM (2014) Chem Eur J 20:11370

    Article  CAS  Google Scholar 

  63. de Jong GT, Visser R, Bickelhaupt FM (2006) J Organomet Chem 691:4341

    Article  Google Scholar 

  64. de Jong GT, Bickelhaupt FM (2009) Can J Chem 87:806

    Article  Google Scholar 

  65. Hashiguchi BG, Konnick MM, Bischof SM, Gustafson SJ, Devarajan D, Gunsalus N, Ess DH, Periana RA (2014) Science 343:1232

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. Ess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

King, C.R., Gustafson, S.J., Ess, D.H. (2015). The Electronics of CH Activation by Energy Decomposition Analysis: From Transition Metals to Main-Group Metals. In: Macgregor, S., Eisenstein, O. (eds) Computational Studies in Organometallic Chemistry. Structure and Bonding, vol 167. Springer, Cham. https://doi.org/10.1007/430_2015_178

Download citation

Publish with us

Policies and ethics