Skip to main content

Advances in Lanthanide Single-Ion Magnets

  • Chapter
  • First Online:
Molecular Nanomagnets and Related Phenomena

Part of the book series: Structure and Bonding ((STRUCTURE,volume 164))

Abstract

We present an overview of the investigation methods of lanthanide-based single-ion magnet. The electronic structure of lanthanide ions is described in the picture of electron–electron interaction, spin–orbit coupling, and ligand-field effects. The ligand-field Hamiltonian is introduced in cooperation with equivalent operator method. In the part of experimental methods, we review the advanced methods of the angle-resolved magnetometry measurement and magnetic resonance spectroscopy on lanthanide ions. In the part of theoretical approaches, we describe the lanthanide-ion electron-density distribution anisotropy using the multipole-moment model, which is able to qualitatively describe the magnetic anisotropy behavior of various lanthanide ions. We introduce three approaches of determining ligand-field parameters. Additionally, we review four series of well-investigated lanthanide single-ion magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Nature 365:141

    Article  CAS  Google Scholar 

  2. Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R, Venturi G, Vindigni A, Rettori A, Pini MG, Novak MA (2001) Angew Chem Int Ed 40:1760

    Article  CAS  Google Scholar 

  3. Bogani L, Wernsdorfer W (2008) Nat Mater 7:179

    Article  CAS  Google Scholar 

  4. Sessoli R, Powell AK (2009) Coordin Chem Rev 253:2328

    Article  CAS  Google Scholar 

  5. Sorace L, Benelli C, Gatteschi D (2011) Chem Soc Rev 40:3092

    Article  CAS  Google Scholar 

  6. Bencini A, Gatteschi D (2012) EPR of exchange coupled systems. Dover, Heidelberg

    Google Scholar 

  7. Gatteschi D, Sorace L (2001) J Solid State Chem 159:253

    Article  CAS  Google Scholar 

  8. Ganivet CR, Ballesteros B, de la Torre G, Clemente-Juan JM, Coronado E, Torres T (2013) Chem Eur J 19:1457

    Google Scholar 

  9. Rinehart JD, Fang M, Evans WJ, Long JR (2011) Nat Chem 3:538

    Article  CAS  Google Scholar 

  10. Milios CJ, Vinslava A, Wernsdorfer W, Moggach S, Parsons S, Perlepes SP, Christou G, Brechin EK (2007) J Am Chem Soc 129:2754

    Article  CAS  Google Scholar 

  11. Woodruff DN, Winpenny REP, Layfield RA (2013) Chem Rev 113:5110

    Article  CAS  Google Scholar 

  12. Figgis BN (2000) Ligand field theory and its applications. Wiley-VCH, New York

    Google Scholar 

  13. Dieke GH, Crosswhite HM, Crosswhite H (1968) Spectra and energy levels of rare earth ions in crystals. Interscience, New York

    Google Scholar 

  14. Edvardsson S, Klintenberg M (1998) J Alloy Compd 275:230

    Article  Google Scholar 

  15. Newman DJ, Ng B (2000) Crystal field handbook. Cambridge University Press, New York

    Book  Google Scholar 

  16. Görller-Walrand C, Binnemans K (1996) Rationalization of crystal-field parametrization. In: Karl A, Gschneidner Jr., LeRoy E (eds) Handbook on the physics and chemistry of rare earths. Amsterdam, Lausanne, New York

    Google Scholar 

  17. Gerloch M (2009) Magnetism and ligand-field analysis. Cambridge University Press, London/New York

    Google Scholar 

  18. Bethe H (1929) Ann Phys Berlin 3:133

    Article  CAS  Google Scholar 

  19. Griffith JS (1961) The theory of transition-metal ions. Cambridge University Press, New York

    Google Scholar 

  20. Wybourne BG (1965) Spectroscopic properties of rare earths. Interscience, New York/London/Sydney

    Google Scholar 

  21. Racah G (1942) Phys Rev 61:186

    Article  CAS  Google Scholar 

  22. Racah G (1942) Phys Rev 62:438

    Article  CAS  Google Scholar 

  23. Racah G (1943) Phys Rev 63:0367

    Article  CAS  Google Scholar 

  24. Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. OUP Oxford, New York

    Google Scholar 

  25. Stevens KWH (1952) P Phys Soc Lond A 65:209

    Article  Google Scholar 

  26. Rudowicz C, Chung CY (2004) J Phys Condens Mat 16:5825

    Article  CAS  Google Scholar 

  27. Görller-Walrand C, Fluyt L (2010) Magnetic circular dichroism of lanthanides. In: Karl A, Gschneidner JJ-CGBn, Vitalij KP (eds) Handbook on the physics and chemistry of rare earths. Oxford, Shannon, Tokyo

    Google Scholar 

  28. McInnes EL (2006) Spectroscopy of single-molecule magnets. In: Winpenny R (ed) Structure and bonding. Springer, Berlin Heidelberg

    Google Scholar 

  29. Luzon J, Sessoli R (2012) Dalton Trans 41:13556

    Article  CAS  Google Scholar 

  30. Bernot K, Luzon J, Bogani L, Etienne M, Sangregorio C, Shanmugam M, Caneschi A, Sessoli R, Gatteschi D (2009) J Am Chem Soc 131:5573

    Article  CAS  Google Scholar 

  31. Cucinotta G, Perfetti M, Luzon J, Etienne M, Car PE, Caneschi A, Calvez G, Bernot K, Sessoli R (2012) Angew Chem Int Ed 51:1606

    Article  CAS  Google Scholar 

  32. Boulon ME, Cucinotta G, Luzon J, Degl'Innocenti C, Perfetti M, Bernot K, Calvez G, Caneschi A, Sessoli R (2013) Angew Chem Int Ed 52:350

    Article  CAS  Google Scholar 

  33. da Cunha TT, Jung J, Boulon M-E, Campo G, Pointillart F, Pereira CLM, Le Guennic B, Cador O, Bernot K, Pineider F, Golhen S, Ouahab L (2013) J Am Chem Soc 135:16332

    Article  Google Scholar 

  34. Kahn O (1993) Molecular magnetism. VCH, New York

    Google Scholar 

  35. Barra AL, Caneschi A, Cornia A, Gatteschi D, Gorini L, Heiniger LP, Sessoli R, Sorace L (2007) J Am Chem Soc 129:10754

    Article  CAS  Google Scholar 

  36. Sorace L, Boulon ME, Totaro P, Cornia A, Fernandes-Soares J, Sessoli R (2013) Phys Rev B 88:104407

    Article  Google Scholar 

  37. Hill S, Datta S, Liu J, Inglis R, Milios CJ, Feng PL, Henderson JJ, del Barco E, Brechin EK, Hendrickson DN (2010) Dalton Trans 39:4693

    Article  CAS  Google Scholar 

  38. del Barco E, Kent AD, Hill S, North JM, Dalal NS, Rumberger EM, Hendrickson DN, Chakov N, Christou G (2005) J Low Temp Phys 140:119

    Article  Google Scholar 

  39. van Slageren J (2012) New directions in electron paramagnetic resonance spectroscopy on molecular nanomagnets. In: Drescher M, Jeschke G (eds) EPR Spectroscopy, topics in current chemistry. Springer, Berlin Heidelberg

    Google Scholar 

  40. van Slageren J, Vongtragool S, Gorshunov B, Mukhin AA, Dressel M (2004) J Magn Magn Mater 272:E765

    Article  Google Scholar 

  41. van Slageren J, Vongtragool S, Gorshunov B, Mukhin AA, Karl N, Krzystek J, Telser J, Muller A, Sangregorio C, Gatteschi D, Dressel M (2003) Phys Chem Chem Phys 5:3837

    Article  Google Scholar 

  42. Weil JA, Bolton JR (2007) Electron paramagnetic resonance: elementary theory and practical applications. Wiley, Hoboken

    Google Scholar 

  43. Aquilante F, De Vico L, Ferre N, Ghigo G, Malmqvist PA, Neogrady P, Pedersen TB, Pitonak M, Reiher M, Roos BO, Serrano-Andres L, Urban M, Veryazov V, Lindh R (2010) J Comput Chem 31:224

    Article  CAS  Google Scholar 

  44. Sievers J (1982) Z Phys B Con Mat 45:289

    Article  CAS  Google Scholar 

  45. Skomski R (2008) Simple models of magnetism. OUP Oxford, New York

    Book  Google Scholar 

  46. Rinehart JD, Long JR (2011) Chem Sci 2:2078

    Article  CAS  Google Scholar 

  47. Chilton NF, Collison D, McInnes EJL, Winpenny REP, Soncini A (2013) Nat Comm 4:3551

    Article  Google Scholar 

  48. Ishikawa N, Iino T, Kaizu Y (2002) J Phys Chem A 106:9543

    Article  CAS  Google Scholar 

  49. Ishikawa N, Sugita M, Okubo T, Tanaka N, Lino T, Kaizu Y (2003) Inorg Chem 42:2440

    Article  CAS  Google Scholar 

  50. Schilder H, Lueken H (2004) J Magn Magn Mater 281:17

    Article  CAS  Google Scholar 

  51. Baldoví JJ, Borrás-Almenar JJ, Clemente-Juan JM, Coronado E, Gaita-Ariño A (2012) Dalton Trans 41:13705

    Article  Google Scholar 

  52. Baldoví JJ, Cardona-Serra S, Clemente-Juan JM, Coronado E, Gaita-Ariño A, Palii A (2013) J Comput Chem 34:1961

    Article  Google Scholar 

  53. Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y (2003) J Am Chem Soc 125:8694

    Article  CAS  Google Scholar 

  54. Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y (2004) J Phys Chem B 108:11265

    Article  CAS  Google Scholar 

  55. Chibotaru LF, Ungur L (2013) Magnetic anisotropy in complexes and its ab initio description. In: European conference on molecular magnetism 2013 satellite workshop on magnetic anisotropy, Karlsruhe

    Google Scholar 

  56. Ishikawa N, Sugita M, Wernsdorfer W (2005) Angew Chem Int Ed 44:2931

    Article  CAS  Google Scholar 

  57. Gatteschi D, Sessoli R (2003) Angew Chem Int Ed 42:268

    Article  CAS  Google Scholar 

  58. Jiang SD, Wang BW, Su G, Wang ZM, Gao S (2010) Angew Chem Int Ed 49:7448

    Article  CAS  Google Scholar 

  59. Chen G-J, Guo Y-N, Tian J-L, Tang J, Gu W, Liu X, Yan S-P, Cheng P, Liao D-Z (2012) Chem Eur J 18:2484

    Article  CAS  Google Scholar 

  60. Chen GJ, Gao CY, Tian JL, Tang JK, Gu W, Liu X, Yan SP, Liao DZ, Cheng P (2011) Dalton Trans 40:5579

    Article  CAS  Google Scholar 

  61. Bi Y, Guo YN, Zhao L, Guo Y, Lin SY, Jiang SD, Tang JK, Wang BW, Gao S (2011) Chem Eur J 17:12476

    Article  CAS  Google Scholar 

  62. Li DP, Wang TW, Li CH, Liu DS, Li YZ, You XZ (2010) Chem Commun 46:2929

    Article  CAS  Google Scholar 

  63. Li DP, Zhang XP, Wang TW, Ma BB, Li CH, Li YZ, You XZ (2011) Chem Commun 47:6867

    Article  CAS  Google Scholar 

  64. Mei XL, Ma Y, Li LC, Liao DZ (2012) Dalton Trans 41:505

    Article  CAS  Google Scholar 

  65. Jiang SD, Wang BW, Sun HL, Wang ZM, Gao S (2011) J Am Chem Soc 133:4730

    Article  CAS  Google Scholar 

  66. Jiang SD, Liu SS, Zhou LN, Wang BW, Wang ZM, Gao S (2012) Inorg Chem 51:3079

    Article  CAS  Google Scholar 

  67. Meihaus KR, Long JR (2013) J Am Chem Soc 135:17952

    Article  CAS  Google Scholar 

  68. Lucaccini E, Sorace L, Perfetti M, Costes JP, Sessoli R (2014) Chem Commun 50:1648

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jiang, SD., Wang, BW., Gao, S. (2014). Advances in Lanthanide Single-Ion Magnets. In: Gao, S. (eds) Molecular Nanomagnets and Related Phenomena. Structure and Bonding, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2014_153

Download citation

Publish with us

Policies and ethics