Skip to main content

In-vivo Fluorescence Imaging: Applications, Future Trends & Approaches to Standardization

  • Chapter
  • First Online:
Standardization and Quality Assurance in Fluorescence Measurements II

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 6))

Abstract

Standards are important for calibration procedures in fluorescence imaging and overall for enabling accurate quantification. However, due to the strong nonlinear dependence of the fluorescence signal on tissue scattering, tissue absorption and activity depth, the construction of standards becomes challenging. So far, most fluorescent standards for diffusive imaging have been based on laboratory solutions that mix scattering, absorbing and fluorescence materials to construct substances of known and stable optical properties. Herein we review the most common characteristics of diffusive imaging and outline strategies to produce materials that can serve as standards in whole body imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arridge SR (1999) Optical tomography in medical imaging. Inverse Problems 15:R41–R93

    Article  Google Scholar 

  2. Schulz RB, Ripoll J, Ntziachristos V (2003) Noncontact optical tomography of turbid media. Opt Lett 28:1701–1703

    Article  Google Scholar 

  3. Ripoll J, Ntziachristos V (2003) Iterative boundary method for diffuse optical tomography. J Opt Soc Am A 20:1103–1110

    Article  Google Scholar 

  4. Graves EE, Ripoll J, Weissleder R, Ntziachristos V (2003) A submillimeter resolution fluorescence molecular imaging system for small animal imaging. Med Phys 30:901–911

    Article  CAS  Google Scholar 

  5. Boverman G, Miller EL, Ang L, Zhang Q, Chaves T, Brooks DH, Boas DA (2005) Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a ptiori structural information. Phys Med Biol 50:3941–3956

    Article  Google Scholar 

  6. Pogue BW, Paulsen KD (1998) High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of apriori magnetic resonance imaging structural information. Opt Lett 23:1716–1718

    Article  CAS  Google Scholar 

  7. Ntziachristos V, Weissleder R (2001) Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation. Opt Lett 26:893–895

    Article  CAS  Google Scholar 

  8. Bouman CA, Sauer K (1996) A unified approach to statistical tomography using coordinate descent optimization. IEEE Transact Image Process 5:480–492

    Article  CAS  Google Scholar 

  9. Klose AD, Hielscher AH (2003) Quasi-Newton methods in optical tomograpic image reconstruction. Inverse Problems 19:387–409

    Article  Google Scholar 

  10. Milstein AB, Stott JJ, Oh S, Boas DA, Millane RP, Bouman CA, Webb KJ (2004) Fluorescence optical diffusion tomography using multiple-frequency data. J Opt Soc Am A 21:1035–1049

    Article  Google Scholar 

  11. Niedre M (2006) Personal Communication

    Google Scholar 

  12. Niedre MJ, Turner GM, Ntziachristos V (2006) Time-resolved imaging of optical coefficients through murine chest cavities. J Biomed Opt 11(6):064017-1-7

    Google Scholar 

  13. Patterson MS, Chance B, Wilson BC (1989) Time Resolved Reflectance and Transmittance for the Noninvasive Measurement of Tissue Optical-Properties. Appl Opt 28:2331–2336

    Article  CAS  Google Scholar 

  14. Ntziachristos V, Tung C, Bremer C, Weissleder R (2002) Fluorescence-mediated tomography resolves protease activity in vivo. Nat Med 8:757–760

    Article  CAS  Google Scholar 

  15. Baeten J, Niedre M, Dunham J, Ntziachristos V (2007) Development of fluorescent materials for Diffuse Fluorescence Tomography standards and phantoms. Opt Express 15(14):8681–8694

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilis Ntziachristos .

Editor information

Ute Resch-Genger

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ntziachristos, V., Hyde, D. (2008). In-vivo Fluorescence Imaging: Applications, Future Trends & Approaches to Standardization. In: Resch-Genger, U. (eds) Standardization and Quality Assurance in Fluorescence Measurements II. Springer Series on Fluorescence, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2008_052

Download citation

Publish with us

Policies and ethics