Skip to main content

Current Perspectives on Saccharomyces cerevisiae Sphingolipids

  • Chapter
Sphingolipid Biology

Summary

This review focuses on recent advances in our understanding of sphingolipid functions in Saccharomyces cerevisiae, particularly their role in signal transduction. The sphingoid long-chain bases, dihydrosphingosine and phytosphingosine, have gained prominence in yeast as regulators of the AGC-type protein kinase Pkh1 and Pkh2, homologs of mammalian phosphoinositide-dependent protein kinase 1 (PDK1). Pkh1 and Pkh2 activate the downstream kinases Pkc1, Ypk1, Ypk2 and Sch9. In addition, PHS acts downstream of Pkh1 and partially activates Ypk1, Ypk2 and Sch9. These kinases control a wide range of cellular processes including growth, cell wall integrity, stress resistance, endocytosis and aging. Our appreciation of long-chain bases as second messengers will grow as we learn more about the processes controlled by AGC kinases as well as other yeast kinases that are likely to be regulated by long-chain bases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

5. References

  • Casamayor A, Torrance PD, Kobayashi T, Thorner J, Alessi DR (1999) Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast. Curr Biol, 9, 186–197.

    Article  PubMed  CAS  Google Scholar 

  • Cowart LA, Hannun YA (2004) Baker’s Yeast: a rising foundation for eukaryotic sphingolipid-mediated cell signalling. in Topics in Current Genetics (Daum G), Vol 6, pp 383–401, Sppringer-Verlag, Berlin.

    Google Scholar 

  • De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A (1994) The role of trehalose synthesis for the aquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem, 219, 179–186.

    Article  PubMed  Google Scholar 

  • deHart AK, Schnell JD, Allen DA, Hicke L (2002) The conserved Pkh-Ypk kinase cascade is required for endocytosis in yeast. J Cell Biol, 156, 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Dickson RC, Lester RL (1999) Metabolism and selected functions of sphingolipids in the yeast Saccharomyces cerevisiae. Biochem Biophys Acta, 1438, 305–321.

    PubMed  CAS  Google Scholar 

  • Dickson RC, Lester RL (2002) Sphingolipid functions in Saccharomyces cerevisiae. Biochem Biophys Acta, 1583, 13–25.

    PubMed  CAS  Google Scholar 

  • Dickson RC, Nagiec EE, Skrzypek M, Tillman P, Wells GB, Lester RL (1997) Sphingolipids are potential heat stress signals in Saccharomyces. J Biol Chem, 272, 30196–30200.

    Article  PubMed  CAS  Google Scholar 

  • Friant S, Lombardi R, Schmelzle T, Hall MN, Riezman H (2001) Sphingoid base signaling via Pkh kinases is required for endocytosis in yeast. EMBO J, 20, 6783–6792.

    Article  PubMed  CAS  Google Scholar 

  • Friant S, Zanolari B, Riezman H (2000) Increased protein kinase or decreased PP2A activity bypasses sphingoid base requirement in endocytosis. EMBO J, 19, 2834–2844.

    Article  PubMed  CAS  Google Scholar 

  • Funato K, Vallee B, Riezman H (2002) Biosynthesis and trafficking of sphingolipids in the yeast Saccharomyces cerevisiae. Biochemistry, 41, 15105–15114.

    Article  PubMed  CAS  Google Scholar 

  • Gelperin D, Horton L, DeChant A, Hensold J, Lemmon SK (2002) Loss of ypk1 function causes rapamycin sensitivity, inhibition of translation initiation and synthetic lethality in 14-3-3-deficient yeast. Genetics, 161, 1453–1464.

    PubMed  CAS  Google Scholar 

  • Goetzl EJ, Rosen H (2004) Regulation of immunity by lysosphingolipids and their G protein-coupled receptors. J Clin Invest, 114, 1531–1537.

    Article  PubMed  CAS  Google Scholar 

  • Hamaguchi A, Suzuki E, Murayama K, Fujimura T, Hikita T, Iwabuchi K, Handa K, Withers DA, Masters SC, Fu H, Hakomori S (2003) Sphingosine-dependent protein kinase-1, directed to 14-3-3, is identified as the kinase domain of protein kinase C delta. J Biol Chemm, 278, 41557–41565.

    Article  CAS  Google Scholar 

  • Hechtberger P, Zinser E, Saf R, Hummel K, Paltauf F, Daum G (1994) Characterization, quantification and subcellular localization of inositol-containing sphingolipids of the yeast, Saccharomyces cerevisiae. Eur J Biochem, 225, 641–649.

    Article  PubMed  CAS  Google Scholar 

  • Heinisch JJ, Lorberg A, Schmitz HP, Jacoby JJ (1999) The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol, 32, 671–680.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki M, Schmelzle T, Yamaguchi K, Irie K, Hall MN, Matsumoto K (1999) PDK1 homologs activate the Pkc1-mitogen-activated protein kinase pathway in yeast. Mol Cell Biol, 19, 8344–8352.

    PubMed  CAS  Google Scholar 

  • Jenkins GM, Hannun YA (2001) Role for de novo sphingoid base biosynthesis in the heat-induced transient cell cycle arrest of Saccharomyces cerevisiae. J Biol Chem, 276, 8574–8581.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins GM, Richards A, Wahl T, Mao CG, Obeid L, Hannun Y (1997) Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J Biol Chem, 272, 32566–32572.

    Article  PubMed  CAS  Google Scholar 

  • King CC, Gardiner EM, Zenke FT, Bohl BP, Newton AC, Hemmings BA, Bokoch GM (2000a) p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). J Biol Chem, 275, 41201–41209.

    Article  PubMed  CAS  Google Scholar 

  • King CC, Zenke FT, Dawson PE, Dutil EM, Newton AC, Hemmings BA, Bokoch GM (2000b) Sphingosine is a novel activator of 3-phosphoinositide-dependent kinase 1. J Biol Chem, 275, 18108–18113.

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Zhang X, Lester RL, Dickson RC (2005) The sphingolipid long-chain base phytosphingosine activates AGC kinases in Saccharomyces cerevisiae including Ypk1, Ypk2 and Sch9. J Biol Chem, 280, 22679–22687.

    Article  PubMed  CAS  Google Scholar 

  • Newton AC (2002) Analyzing protein kinase C activation. Methods Enzymol, 345, 499–506.

    Article  PubMed  Google Scholar 

  • Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer, 4, 604–616.

    Article  PubMed  CAS  Google Scholar 

  • Patton JL, Lester RL (1991) The phosphoinositol sphingolipids of Saccharomyces cerevisiae are highly localized in the plasma membrane. J Bacteriol, 173, 3101–3108.

    PubMed  CAS  Google Scholar 

  • Patton JL, Srinivasan B, Dickson RC, Lester RL (1992) Phenotypes of sphingolipid-dependent strains of Saccharomyces cerevisiae. J Bacteriol, 174, 7180–7184.

    PubMed  CAS  Google Scholar 

  • Roelants FM, Torrance PD, Bezman N, Thorner J (2002) Pkh1 and Pkh2 differentially phosphorylate and activate Ypk1 and Ykr2 and define protein kinase modules required for maintenance of cell wall integrity. Mol Biol Cell, 13, 3005–3028.

    Article  PubMed  CAS  Google Scholar 

  • Roelants FM, Torrance PD, Thorner J (2004) Differential roles of PDK1-and PDK2-phosphorylation sites in the yeast AGC kinases Ypk1, Pkc1 and Sch9. Microbiology, 150, 3289–3304.

    Article  PubMed  CAS  Google Scholar 

  • Roig J, Tuazon PT, Traugh JA (2001) Cdc42-independent activation and translocation of the cytostatic p21-activated protein kinase gamma-PAK by sphingosine. FEBS Lett, 507, 195–199.

    Article  PubMed  CAS  Google Scholar 

  • Schmelzle T, Helliwell SB, Hall MN (2002) Yeast Protein Kinases and the RHO1 Exchange Factor TUS1 Are Novel Components of the Cell Integrity Pathway in Yeast. Mol Cell Biol, 22, 1329–1339.

    Article  PubMed  CAS  Google Scholar 

  • Schneiter R, Brugger B, Sandhoff R, Zellnig G, Leber A, Lampl M, Athenstaedt K, Hrastnik C, Eder S, Daum G, Paltauf F, Wieland FT, Kohlwein SD (1999) Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J Cell Biol, 146, 741–754.

    Article  PubMed  CAS  Google Scholar 

  • Sims KJ, Spassieva SD, Voit EO, Obeid LM (2004) Yeast sphingolipid metabolism: clues and connections. Biochem Cell Biol, 82, 45–61.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol, 4, 397–407.

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Taniguchi R, Tanoue D, Yamaji T, Takematsu H, Mori K, Fujita T, Kawasaki T, Kozutsumi Y (2000) Sli2 (Ypk1), a homologue of mammalian protein kinase SGK, is a downstream kinase in the sphingolipid-mediated signaling pathway of yeast. Mol Cell Biol, 20, 4411–4419.

    Article  PubMed  CAS  Google Scholar 

  • Sutterlin C, Doering TL, Schimmoller F, Schroder S, Riezman H (1997) Specific requirements for the ER to Golgi transport of GPI-anchored proteins in yeast. J Cell Sci, 110, 703–2714.

    Google Scholar 

  • Zhang X, Lester RL, Dickson RC (2004) Pil1p and Lsp1p negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p. J Biol Chem, 279, 22030–22038.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Dickson, R.C., Lester, R.L. (2006). Current Perspectives on Saccharomyces cerevisiae Sphingolipids. In: Hirabayashi, Y., Igarashi, Y., Merrill, A.H. (eds) Sphingolipid Biology. Springer, Tokyo. https://doi.org/10.1007/4-431-34200-1_10

Download citation

Publish with us

Policies and ethics