Skip to main content

The role of the immune system in TSE agent neuroinvasion

  • Conference paper
Book cover Prions

Summary

Many natural infections with transmissible spongiform encephalopathy (TSE) agents are likely to be acquired peripherally for example, following ingestion of contaminated feed. Following peripheral exposure TSE agents accumulate in lymphoid tissues before spreading to the brain. Many studies have attempted to identify the cells and their components that are required for the delivery of the TSE agent from the site of inoculation to the brain, a process termed neuroinvasion. In the lymphoid tissues of TSE-affected hosts these agents, as identified by disease-specific prion protein accumulations, usually accumulate on follicular dendritic cells (FDCs). Studies of mouse TSE models have shown that mature FDCs are critical for replication of infection in lymphoid tissues and subsequent neuroinvasion. Although examples of FDC-independent neuroinvasion have been described, treatments that interfere with the integrity or function of FDCs reduce TSE susceptibility by blocking the spread of disease to the brain. For example, temporary depletion of FDCs before oral inoculation with TSE agents blocks the accumulation of disease-specific PrP in Peyer’s patches and mesenteric lymph nodes, and prevents neuroinvasion.

Studies in mice have shown that skin scarification is also an effective means of TSE agent transmission. Following inoculation via the skin the agent accumulates in the draining lymph node in association with FDCs. The accumulation of TSE agents in association with FDCs is also critical for the transmission of disease from the skin to the brain, as disease susceptibility is reduced in their absence. The mechanisms through which TSE agents are transported from the site of inoculation such as the gut or skin to lymphoid tissues are not known. Bone marrow-derived migratory dendritic cells have been proposed as a potential method of TSE agent transport from the gut lumen. Langerhans cells (LCs) reside in the epidermis and migrate to the draining lymph node after encountering antigen, suggesting these cells might play a role in TSE agent transportation from the skin. To investigate the potential role of LCs in TSE agent transportation, mouse models have been utilized in which their migration was blocked. Experiments show that the early accumulation of TSE agents in the draining lymph node and their subsequent neuroinvasion was not impaired in mice with blocked LC migration. Thus although LCs have the potential to acquire TSE agents they are not involved in their transportation to draining lymphoid tissues.

The identification of cell populations critical for TSE pathogenesis provides cellular targets to which therapies can be directed. Described below are current understandings of the involvement of the immune system in the neuroinvasion of TSE agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bolton DC, McKinley MP, Prusiner SB (1982) Identification of a protein that purifies with the scrapie prion. Science 218:1309–1311.

    PubMed  CAS  Google Scholar 

  2. Büeler H, Aguzzi A, Sailer A, et al (1993) Mice devoid of PrP are resistant to scrapie. Cell 73:1339–1347.

    Article  PubMed  Google Scholar 

  3. Manson JC, Clarke AR, Hooper ML, et al (1994) 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 8:121–127.

    PubMed  CAS  Google Scholar 

  4. Prusiner SB, Bolton DC, Groth DF, et al (1982) Further purification and characterisation of scrapie prions. Biochemistry (Mosc) 21:6942–6950.

    Article  PubMed  CAS  Google Scholar 

  5. Legname G, Baskakov IV, Nguyen H-OB, et al (2004) Synthetic mammalian prions. Science 305:673–676.

    Article  PubMed  CAS  Google Scholar 

  6. Duffy P, Wolf J, Collins G, et al (1974) Possible person to person transmission of Creutzfeldt-Jacob disease. N Engl J Med 290:692.

    PubMed  CAS  Google Scholar 

  7. Llewelyn CA, Hewitt PE, Knight RSG, et al (2004) Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet 363:417–421.

    Article  PubMed  CAS  Google Scholar 

  8. Peden AH, Head MW, Ritchie DL, et al (2004) Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient Lancet 354:527–529.

    Article  Google Scholar 

  9. Taylor DM, McConnell I, Fraser H (1996) Scrapie infection can be established readily through skin scarification in immunocompetent but not immunodeficient mice. J Gen Virol 77:1595–1599.

    PubMed  CAS  Google Scholar 

  10. Bartz JC, Kincaid AE, Bessen RA (2003) Rapid prion neuroinvasion following tongue infection. J Virol 77:583–591.

    Article  PubMed  CAS  Google Scholar 

  11. Brotherston JG, Renwick CC, Stamp JT, et al (1968) Spread of scrapie by contact to goats and sheep. J Comp Path 78:9–17.

    Article  PubMed  CAS  Google Scholar 

  12. Flechsig E, Hegyi I, Enari M, et al (2001) Transmission of scrapie by steel-surface-bound prions Mol Med 7:679–684.

    PubMed  CAS  Google Scholar 

  13. Birmingham K (2000) Were some CJD victims infected by vaccines? Nature 408:3–5.

    Article  PubMed  CAS  Google Scholar 

  14. Lupi O (2002) Prions in dermatology. J Am Acad Dermatol 46:790–793.

    Article  PubMed  Google Scholar 

  15. Kimberlin RH, Walker CA (1979) Pathogenesis of mouse scrapie: Dynamics of agent replication in spleen, spinal cord and brain after infection by different routes. J Comp Path 89:551–562.

    Article  PubMed  CAS  Google Scholar 

  16. Farquhar CF, Dornan J, Somerville RA, et al (1994) Effect of Sinc genotype, agent isolate and route of infection on the accumulation of protease-resistant PrP in non-central nervous system tissues during the development of murine scrapie. J Gen Virol 75:495–504.

    PubMed  CAS  Google Scholar 

  17. Brown KL, Stewart K, Ritchie D, et al (1999) Scrapie replication in lymphoid tissues depends on PrP-expressing follicular dendritic cells. Nat Med 5:1308–1312.

    Article  PubMed  CAS  Google Scholar 

  18. Beekes M, McBride PA (2000) Early accumulation of pathological PrP in the enteric nervous system and gut-associated lymphoid tissue of hamsters orally infected with scrapie. Neurosci Lett 278:181–184.

    Article  PubMed  CAS  Google Scholar 

  19. Heggebø R, Press CM, Gunnes G, et al (2000) Distribution of prion protein in the ileal Peyer’s patch of scrapie-free lambs and lambs naturally and experimentally exposed to the scrapie agent J Gen Virol 81:2327–2337.

    PubMed  Google Scholar 

  20. Andreoletti O, Berthon P, Marc D, et al (2000) Early accumulation of PrPSc in gut-associated lymphoid and nervous tissues of susceptible sheep from a Romanov flock with natural scrapie. J Gen Virol 81:3115–3126.

    PubMed  CAS  Google Scholar 

  21. van Keulen LJM, Schreuder BEG, Vromans MEW, et al (1999) Scrapie-associated prion protein in the gastro-intestinal tract of sheep with scrapie. J Comp Path 121:55–63.

    Article  PubMed  Google Scholar 

  22. Hilton D, Fathers E, Edwards P, et al (1998) Prion immunoreactivity in appendix before clinical onset of variant Creutzfeldt-Jakob disease. Lancet 352:703–704.

    Article  PubMed  CAS  Google Scholar 

  23. Fraser H, Dickinson AG (1978) Studies on the lymphoreticular system in the pathogenesis of scrapie: The role of spleen and thymus. J Comp Path 88:563–573.

    Article  PubMed  CAS  Google Scholar 

  24. Somerville RA, Birkett CR, Farquhar CF, et al (1997) Immunodetection of PrPSc in spleens of some scrapie-infected sheep but not BSE-infected cows. J Gen Virol 78:2389–2396.

    PubMed  CAS  Google Scholar 

  25. Hill AF, Butterworth RJ, Joiner S, et al (1999) Investigation of variant Creutzfeldt-Jakob disease and other prion diseases with tonsil biopsy samples. Lancet 353:183–189.

    Article  PubMed  CAS  Google Scholar 

  26. Glatzel M, Abela E, Maissen M, et al (2003) Extraneural pathological prion protein in sporadic Creutzfeldt-Jakob disease. N Engl J Med 349:1812–1820.

    Article  PubMed  CAS  Google Scholar 

  27. Bruce ME, McConnell I, Will RG, et al (2001) Detection of variant Creutzfeldt-Jakob disease (vCJD) infectivity in extraneural tissues. Lancet 358:208–209.

    Article  PubMed  CAS  Google Scholar 

  28. van Keulen LJM, Schreuder BEC, Meloen RH, et al (1996) Immunohistological detection of prion protein in lymphoid tissues of sheep with natural scrapie. J Clin Microbiol 34:1228–1231.

    PubMed  Google Scholar 

  29. McBride P, Eikelenboom P, Kraal G, et al (1992) PrP protein is associated with follicular dendritic cells of spleens and lymph nodes in uninfected and scrapie-infected mice. J Pathol 168:413–418.

    Article  PubMed  CAS  Google Scholar 

  30. Mabbott NA, Williams A, Farquhar CF, et al (2000) Tumor necrosis factor-alpha-deficient, but not interleukin-6-deficient, mice resist peripheral infection with scrapie. J Virol 74:3338–3344.

    Article  PubMed  CAS  Google Scholar 

  31. Jeffrey M, McGovern G, Goodsir CM, et al (2000) Sites of prion protein accumulation in scrapie-infected mouse spleen revealed by immuno-electron microscopy. J Pathol 191:323–332.

    Article  PubMed  CAS  Google Scholar 

  32. Fraser H, Farquhar CF (1987) Ionising radiation has no influence on scrapie incubation period in mice. Vet Microbiol 13:211–223.

    Article  PubMed  CAS  Google Scholar 

  33. Kapasi ZF, Qin D, Kerr WG, et al (1998) Follicular dendritic cell (FDC) precursors in primary lymphoid tissues J Immunol 160:1078–1084.

    PubMed  CAS  Google Scholar 

  34. Tkachuk M, Bolliger S, Ryffel B, et al (1998) Crucial role of tumour necrosis factor receptor 1 expression on nonhematopoietic cells for B cell localization within the splenic white pulp. J Exp Med 187:469–477.

    Article  PubMed  CAS  Google Scholar 

  35. Endres R, Alimzhanov MB, Plitz T, et al (1999) Mature follicular dendritic cell networks depend on expression of lymphotoxin β receptor by radioresistant stromal cells and of lymphotoxin β and tumour necrosis factor by B cells. J Exp Med 189:159–168.

    Article  PubMed  CAS  Google Scholar 

  36. Kitamoto T, Muramoto T, Mohri S, et al (1991) Abnormal Isoform of Prion Protein Accumulates in Follicular Dendritic Cells in Mice with Creutzfeldt-Jakob Disease. J Virol 65:6292–6295.

    PubMed  CAS  Google Scholar 

  37. Sigurdson CJ, Barillas-Mury C, Miller MW, et al (2002) PrPCWD lymphoid cell targets in early and advanced chronic wasting disease of mule deer. J Gen Viro 183:2617–2628.

    Google Scholar 

  38. Cashman NR, Loertscher R, Nalbantoglu J, et al (1990) Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell 61:185–192.

    Article  PubMed  CAS  Google Scholar 

  39. Mabbott NA, Brown KL, Manson J, et al (1997) T lymphocyte activation and the cellular form of the prion protein Immunology 92:161–165.

    Article  PubMed  CAS  Google Scholar 

  40. Burthem J, Urban B, Pain A, et al (2001) The normal cellular prion protein is strongly expressed by myeloid dendritic cells. Blood 98:3733–3738.

    Article  PubMed  CAS  Google Scholar 

  41. Lötscher M, Recher M, Hunzinker L, et al (2003) Immunologically induced, complement-dependent up-regulation of the prion protein in the mouse spleen: follicular dendritic cells versus capsule and trabeculae. J Immunol 170

    Google Scholar 

  42. Prinz M, Montrasio F, Klein MA, et al (2002) Lymph nodal prion replication and neuroinvasion in mice devoid of follicular dendritic cells. Proc Natl Acad Sci USA 99:919–924.

    Article  PubMed  CAS  Google Scholar 

  43. Thomzig A, Kratzel C, Lenz G, et al (2003) Widespread PrPSc accumulation in muscles of hamsters orally infected with scrapie. EMBO Reports 4:530–533.

    Article  PubMed  CAS  Google Scholar 

  44. Terry LA, Marsh S, Ryder SJ, et al (2003) Detection of disease-specific PrP in the distal ileum of cattle exposed orally to the agent of bovine spongiform encephalopathy. Vet Rec 152:387–392.

    PubMed  CAS  Google Scholar 

  45. O’Rourke KI, Huff TP, Leathers CW, et al (1994) SCID Mouse Spleen Does Not Support Scrapie Agent Replication. J Gen Virol 75:1511–1514.

    PubMed  CAS  Google Scholar 

  46. Fraser H, Brown KL, Stewart K, et al (1996) Replication of scrapie in spleens of SCID mice follows reconstitution with wild-type mouse bone marrow. J Gen Virol 77:1935–1940.

    PubMed  CAS  Google Scholar 

  47. Klein MA, Frigg R, Flechsig E, et al (1997) A crucial role for B cells in neuroinvasive scrapie. Nature 390:687–691.

    PubMed  CAS  Google Scholar 

  48. Kosco-Vilbois MH, Zentgraf H, Gerdes J, et al (1997) To “B” or not to “B” a germinal center? Immunol Today 18:225–230.

    Article  PubMed  CAS  Google Scholar 

  49. Chaplin DD, Fu Y-X (1998) Cytokine regulation of secondary lymphoid organ development Curr Opin Immunol 10:289–297.

    Article  PubMed  CAS  Google Scholar 

  50. Oldstone MBA, Race R, Thomas D, et al (2002) Lymphotoxin-α-and lymphotoxin-β-deficient mice differ in susceptibility to scrapie: Evidence against dendritic cell involvement. J Virol 76:4357–4363.

    Article  PubMed  CAS  Google Scholar 

  51. Manuelidis L, Zaitsev I, Koni P, et al (2000) Follicular dendritic cells and dissemination of Creutzfeldt-Jakob disease. J Virol 74:8614–8622.

    Article  PubMed  CAS  Google Scholar 

  52. Pasparakis M, Alexopoulo L, Episkopou V, et al (1996) Immune and inflammatory responses in TNFα-deficient mice: A critical requirement for TNFα in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centres, and in the maturation of the humoral immune response. J Exp Med 184:1397–1411.

    Article  PubMed  CAS  Google Scholar 

  53. Koni PA, Sacca R, Lawton P, et al (1997) Distinct roles in lymphoid organogenesis for lymphotoxins α and β revealed in lymphotoxin β-deficient mice. Immunity 6:491–500.

    Article  PubMed  CAS  Google Scholar 

  54. Klein MA, Frigg R, Raeber AJ, et al (1998) PrP expression in B lymphocytes is not required for prion neuroinvasion. Nat Med 4:1429–1433.

    Article  PubMed  CAS  Google Scholar 

  55. Mohan J, Brown KL, Farquhar CF, et al (2004) Scrapie transmission following exposure through the skin is dependent on follicular dendritic cells in lymphoid tissues. J Dermatol Sci 35:101–111.

    Article  PubMed  CAS  Google Scholar 

  56. Klein MA, Kaeser PS, Schwarz P, et al (2001) Complement facilitates early prion pathogenesis. Nat Med 7:488–492.

    Article  PubMed  CAS  Google Scholar 

  57. Mabbott NA, Bruce ME, Botto M, et al (2001) Temporary depletion of complement component C3 or genetic deficiency of C1q significantly delays on-set of scrapie. Nat Med 7:485–487.

    Article  PubMed  CAS  Google Scholar 

  58. Mabbott NA (2004) The complement system in prion diseases. Curr Opin Immunol 16:587–593.

    Article  PubMed  CAS  Google Scholar 

  59. Mackay F, Browning JL (1998) Turning off follicular dendritic cells. Nature 395:26–27.

    Article  PubMed  CAS  Google Scholar 

  60. Gommerman JL, Mackay F, Donskoy E, et al (2002) Manipulation of lymphoid microenvironments in non-human primates by an inhibitor of the lymphotoxin pathway. J Clin Invest 110:1359–1369.

    Article  PubMed  CAS  Google Scholar 

  61. Force WR, Walter BN, Hession C, et al (1995) Mouse lymphotoxin-beta receptor. J Immunol 155:5280–5288.

    PubMed  CAS  Google Scholar 

  62. Yoshida K, van den Berg TK, Dijkstra CD (1993) Two functionally different follicular dendritic cells in secondary lymphoid follicles of mouse spleen, as revealed by CR1/2 and FcRγII-mediated immune-complex trapping Immunology 80:34–39.

    PubMed  CAS  Google Scholar 

  63. Nielsen CH, Fischer EM, Leslie RGQ (2000) The role of complement in the acquired immune response. Immunology 100:4–12.

    Article  PubMed  CAS  Google Scholar 

  64. Mabbott NA, Young J, McConnell I, et al (2003) Follicular dendritic cell dedifferentiation by treatment with an inhibitor of the lymphotoxin pathway dramatically reduces scrapie susceptibility. J Virol 77:6845–6854.

    Article  PubMed  CAS  Google Scholar 

  65. Mohan J, Bruce ME, Mabbott NA (2005) Follicular dendritic cell dedifferentiation reduces scrapie susceptibility following inoculation via the skin. Immunology 114:in press.

    Google Scholar 

  66. Mabbott NA, Mackay F, Minns F, et al (2000) Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nat Med 6:719–720.

    Article  PubMed  CAS  Google Scholar 

  67. Montrasio F, Frigg R, Glatzel M, et al (2000) Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288:1257–1259.

    Article  PubMed  CAS  Google Scholar 

  68. Mabbott NA, McGovern G, Jeffrey M, et al (2002) Temporary blockade of the tumour necrosis factor signaling pathway impedes the spread of scrapie to the brain J Virol 76:5131–5139.

    Article  PubMed  CAS  Google Scholar 

  69. Bruce ME, Will RG, Ironside JW, et al (1997) Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent Nature 389:498–501.

    Article  PubMed  CAS  Google Scholar 

  70. Hill AF, Zeidler M, Ironside J, et al (1997) Diagnosis of new variant Creutzfeldt-Jakob disease by tonsil biopsy. Lancet 349:99–100.

    Article  PubMed  CAS  Google Scholar 

  71. Kimberlin RH, Walker CA (1989) Pathogenesis of scrapie in mice after intragastric infection. Virus Res 12:213–220.

    Article  PubMed  CAS  Google Scholar 

  72. Maignien T, Lasmezas CI, Beringue V, et al (1999) Pathogenesis of the oral route of infection of mice with scrapie and bovine spongiform encephalopathy agents. J Gen Virol 80:3035–3042.

    PubMed  CAS  Google Scholar 

  73. McBride PA, Schulz-Shaeffer WJ, Donaldson M, et al (2001) Early spread of scrapie from the gastrointestinal tract to the central nervous system involves autonomic fibers of the splanchnic and vagus nerves. J Virol 75:9320–9327.

    Article  PubMed  CAS  Google Scholar 

  74. Heggebø R, McL. Press C, Gunnes G, et al (2002) Distribution and accumulation of PrP in gut-associated and peripheral lymphoid tissue of scrapie-affected Suffolk sheep. J Gen Virol 83:479–489.

    PubMed  Google Scholar 

  75. Shmakov AN, McLennan NF, McBride P, et al (2000) Cellular prion protein is expressed in the human enteric nervous system Nat Med 6940–841.

    Google Scholar 

  76. Aucouturier P, Geissmann F, Damotte D, et al (2001) Infected splenic dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie. J Clin Invest 108:703–708.

    Article  PubMed  CAS  Google Scholar 

  77. Mauri DN, Ebner R, Montgomery RI, et al (1998) LIGHT, a new member of the TNF superfamily, and lymphotoxin α are ligands for Herpesvirus entry mediator. Immunity 8:21–30.

    Article  PubMed  CAS  Google Scholar 

  78. McFarlin DE, Raff MC, Simpson E, et al (1971) Scrapie in immunologically deficient mice. Nature 233:336.

    Article  PubMed  CAS  Google Scholar 

  79. Wu Q, Wang Y, Hedgeman EO, et al (1999) The requirement of membrane lymphotoxin for the presence of dendritic cells in lymphoid tissues. J Exp Med 190:629–638.

    Article  PubMed  CAS  Google Scholar 

  80. Banchereau J, Briere F, Caux C, et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811.

    Article  PubMed  CAS  Google Scholar 

  81. Gommerman JL, Giza K, Perper S, et al (2003) A role for surface lymphotoxin in experimental autoimmune encephalomyelitis independent of LIGHT. J Clin Invest 112:755–767.

    Article  PubMed  CAS  Google Scholar 

  82. Burton GF, Masuda A, Heath SL, et al (1998) Follicular dendritic cells (FDC) in retroviral infection: host/pathogen perspectives. Immunol Rev 156:185–197.

    Article  Google Scholar 

  83. Kagami Y, Jung J, Choi YS, et al (2001) Establishment of a follicular lymphoma cell line (FLK-1) dependent on follilcular dendritic cell-like cell line HK Leukemia 15:148–156.

    Article  PubMed  CAS  Google Scholar 

  84. Hilton DA, Ghani AC, Conyers L, et al (2002) Accumulation of prion protein in tonsil and appendix: review of tissue samples. Br Med J 325:633–634.

    Google Scholar 

  85. Prinz M, Heikenwalder M, Junt T, et al (2003) Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature 425:957–962.

    Article  PubMed  CAS  Google Scholar 

  86. Blättler T, Brandner S, Raeber AJ, et al (1997) PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature 389:69–73.

    Article  PubMed  Google Scholar 

  87. Kaeser PS, Klein MA, Schwarz P, et al (2001) Efficient lymphoreticular prion propagation requires PrPc in stromal and hematopoietic cells. J Virol 75:7097–7106.

    Article  PubMed  CAS  Google Scholar 

  88. Wells GAH, Dawson M, Hawkins SAC, et al (1994) Infectivity in the ileum of cattle challenged orally with bovine spongiform encephalopathy. Vet Rec 135:40–41.

    PubMed  CAS  Google Scholar 

  89. Neutra MR, Frey A, Kraehenbuhl J-P (1996) Epithelial M Cells: Gateways for Mucosal Infection and Immunization. Cell 86:345–348.

    Article  PubMed  CAS  Google Scholar 

  90. Heppner FL, Christ AD, Klein MA, et al (2001) Transepithelial prion transport by M cells. Nat Med 7:976–977.

    Article  PubMed  CAS  Google Scholar 

  91. Huang F-P, Farquhar CF, Mabbott NA, et al (2002) Migrating intestinal dendritic cells transport PrPSc from the gut. J Gen Virol 83:267–271.

    PubMed  CAS  Google Scholar 

  92. Carp RI, Callahan SM (1982) Effect of mouse peritoneal macrophages on scrapie infectivity during extended in vitro incubation Intervirology 17:201–207.

    Article  PubMed  CAS  Google Scholar 

  93. Carp RI, Callahan SM (1981) In vitro interaction of scrapie agent and mouse peritoneal macrophages. Intervirology 16:8–13.

    PubMed  CAS  Google Scholar 

  94. Beringue V, Demoy M, Lasmezas CI, et al (2000) Role of spleen macrophages in the clearance of scrapie agent early in pathogenesis. J Pathol 190:495–502.

    Article  PubMed  CAS  Google Scholar 

  95. Kapasi ZF, Burton GF, Schultz LD, et al (1993) Induction of functional follicular dendritic cell development in severe combined immunodeficiency mice. J Immunol 150:2648–2658.

    PubMed  CAS  Google Scholar 

  96. Wykes M, Pombo A, Jenkins C, et al (1998) Dendritic cells interact directly with Naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J Immunol 161:1313–1319.

    PubMed  CAS  Google Scholar 

  97. Kaneider NC, Kaser A, Dunzendorfer S, et al (2003) Sphingosine kinase-dependent migration of immature dendritic cells in response to neurotoxic prion protein fragment J Virol 77:5535–5539.

    Article  PubMed  CAS  Google Scholar 

  98. Luhr KM, Wallin RPA, Ljunggren H-G, et al (2002) Processing and degradation of exogenous prion protein by CD11c+ myeloid dendritic cells in vitro. J Virol 76:12259–12264.

    Article  PubMed  CAS  Google Scholar 

  99. Maric I, Holt PG, Perdue MH, et al (1996) Class II MHC antigen (Ia)-bearing dendritic cells in the epithelium of the rat intestine. J Immunol 156:1408–1414.

    PubMed  CAS  Google Scholar 

  100. Kelsall BL, Strober W (1996) Distinct populations of dendritic cells are present in the subepthelial dome and T cell regions of the murine Peyer’s patch. J Exp Med 183:237–247.

    Article  PubMed  CAS  Google Scholar 

  101. Rescigno M, Urbano M, Valzasina B, et al (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria Nature Immunol 2:361–367.

    Article  CAS  Google Scholar 

  102. Wu S-JL, Grouard-Vogel G, Sun W, et al (2000) Human skin Langerhans cells are targets of dengue virus infection. Nat Med 6:816–820.

    Article  PubMed  CAS  Google Scholar 

  103. Reece JC, Handley AJ, Anstee EJ, et al (1998) HIV-1 selection by epidermal dendritic cells during transmission across human skin J Exp Med 187:1623–1631.

    Article  PubMed  CAS  Google Scholar 

  104. Ryan S, Tiley L, McConnell I, et al (2000) Infection of dendritic cells by the Maedi-Visna Lentivirus. J Virol 74:10096–10103.

    Article  PubMed  CAS  Google Scholar 

  105. MacDonald GH, Johnston RE (2000) Role of dendritic cell targeting in venezuelan equine encephalitis virus pathogenesis J Virol 62:914–922.

    Article  Google Scholar 

  106. Mohan J, Bruce ME, Mabbott NA (2005) Neuroinvasion by scrapie following inoculation via the skin is independent of migratory Langerhans cells. J Virol 79:in press.

    Google Scholar 

  107. Cumberbatch M, Dearman RJ, Kimber I (1997) Langerhans cells require signals from both tumour necrosis factor-α and interleukin-1β for migration. Immunology 92:388–396.

    Article  PubMed  CAS  Google Scholar 

  108. Stoitzner P, Zanella M, Ortner U, et al (1999) Migration of Langerhans cells and dermal dendritic cells in skin organ cultures: augmentation by TNF-α and IL-1β. J Leukoc Biol 66:462–470.

    PubMed  CAS  Google Scholar 

  109. Thornberry NA, Bull HG, Calaycay JR, et al (1991) A novel heterodimeric cysteine protease is required for interleukin-1b processing in monocytes. Nature 356:768.

    Article  Google Scholar 

  110. Antonopoulos C, Cumberbatch M, Dearman RJ, et al (2001) Functional caspase-1 is required for Langerhans cell migration and optimal contact sensitization in mice. J Immunol 166:3672–3677.

    PubMed  CAS  Google Scholar 

  111. Thornberry NA, Peterson EP, Zhao JJ, et al (1994) Inactivation of interleukin-1β converting enzyme by peptide (acy1oxy)methyl ketones. Biochemistry (Mosc) 33:3934–3940.

    Article  PubMed  CAS  Google Scholar 

  112. Garcia Calvo M, Peterson EP, Leiting B, et al (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273:32608–32613.

    Article  PubMed  CAS  Google Scholar 

  113. Moodycliffe AM, Shreedhar V, Ullrich SE, et al (2000) CD40-CD40 ligand interactions in vivo regulate migration of antigen-bearing dendritic cells from the skin to draining lymph nodes. J Exp Med 191:2011–2020.

    Article  PubMed  CAS  Google Scholar 

  114. Mabbott NA, Bruce ME (2004) Complement component C5 is not involved in scrapie pathogenesis Immunobiology 209:545–549

    Article  PubMed  CAS  Google Scholar 

  115. Brown P (1996) The risk of blood-borne Creutzfeldt-Jakob Disease. In: Court L, Dodet B (eds) Transmissible Subacute Spongiform Encephalopathies: Prion Diseases. Elsevier, Paris pp 447–450.

    Google Scholar 

  116. Houston F, Foster JD, Chong A, et al (2000) Transmission of BSE by blood transfusion in sheep. Lancet 356:999.

    Article  PubMed  CAS  Google Scholar 

  117. Hunter N, Foster J, Chong A, et al (2002) Transmission of prion diseases by blood transfusion J Gen Virol 83:2897–2905.

    PubMed  CAS  Google Scholar 

  118. Glatzel M, Aguzzi A (2000) PrPc expression in the peripheral nervous system is a determinant of prion neuroinvasion. J Gen Virol 81:2813–2821.

    PubMed  CAS  Google Scholar 

  119. Race R, Oldstone M, Chesebro B (2000) Entry versus blockade of brain infection following oral or intraperitoneal scrapie administration: Role of prion protein expression in peripheral nerves and spleen. J Gen Virol 74:828–833.

    CAS  Google Scholar 

  120. Beekes M, Baldauf E, Diringer H (1996) Sequential appearance and accumulation of pathognomonic markers in the central nervous system of hamsters orally infected with scrapie. J Gen Virol 77:1925–1934.

    Article  PubMed  CAS  Google Scholar 

  121. Baldauf E, Beekes M, Diringer H (1997) Evidence for an alternative direct route of access for the scrapie agent to the brain bypassing the spinal cord. J Gen Virol 78:1187–1197.

    PubMed  CAS  Google Scholar 

  122. Beekes M, McBride PA, Baldauf E (1998) Cerebral targeting indicates vagal spread of infection in hamsters fed with scrapie. J Gen Virol 79:601–607.

    PubMed  CAS  Google Scholar 

  123. McBride PA, Beekes M (1999) Pathological PrP is abundant in sympathetic and sensory ganglia of hamsters fed with scrapie. Neurosci Lett 265:135–138.

    Article  PubMed  CAS  Google Scholar 

  124. Glatzel M, Heppner FL, Albers KM, et al (2001) Sympathetic innervation of lymphoreticular organs is rate limiting for prion neuroinvasion Neuron 31:25–34.

    Article  PubMed  CAS  Google Scholar 

  125. Haïk S, Faucheux BA, Sazdovitch V, et al (2003) The sympathetic nervous system is involved in variant Creutzfeldt-Jakob disease. Nat Med 9:1121–1123.

    Article  PubMed  CAS  Google Scholar 

  126. Felten SY, Felten DL (1991) Innervation of Lymphoid Tissue. In: Psychoneuroimmunology. Academic Press Inc, pp 27–69.

    Google Scholar 

  127. Mabbott NA, Bruce ME (2003) Prion disease: bridging the spleen-nerve gap. Nat Med 9:1463–1464.

    Article  PubMed  CAS  Google Scholar 

  128. Heggebø R, González L, Press CM, et al (2003) Disease associated PrP in the enteric nervous system of scrapie-affected sheep. J Gen Virol 84:1327–1338.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Tokyo

About this paper

Cite this paper

Mabbott, N.A., Mohan, J., Bruce, M.E. (2005). The role of the immune system in TSE agent neuroinvasion. In: Kitamoto, T. (eds) Prions. Springer, Tokyo. https://doi.org/10.1007/4-431-29402-3_10

Download citation

  • DOI: https://doi.org/10.1007/4-431-29402-3_10

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-25539-0

  • Online ISBN: 978-4-431-29402-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics