Skip to main content

Dissolved oxygen electrodes

  • Conference paper
  • First Online:
Advances in Biochemical Engineering, Volume 13

Part of the book series: Advances in Biochemical Engineering ((ABE,volume 13))

Abstract

Recent advances in theory, construction, operation, and application of dissolved oxygen (DO) electrodes are reviewed to assist those who use or intend to use them in such areas as biochemical engineering, microbiology, and environmental engineering. Basic operating principles of membrane-covered DO electrodes and oxygen microelectrodes are presented together with methods of construction, electrode component selection, and general design considerations. Methods of calibration and effects of temperature and liquid film on electrode performance are also discussed. Sources of measurement errors due to probe characteristics and the reaction in the liquid are discussed to illustrate some of the limitations of DO electrodes. The spacial resolution of oxygen microelectrodes in local concentration measurements is also discussed. Finally, the application of DO electrodes in measuring aeration capacity and oxygen solubility is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a:

gas-liquid interfacial area

A:

surface area of cathode

A1, A2 :

quantities defined in Eq. (47)

B:

quantity defined in Eq. (61)

B1, B2 :

thermistor constants defined in Eq. (48)

c:

concentration of dissolved oxygen

Cg :

inlet gaseous oxygen concentration

C′g :

oxygen concentration in dispersed gas phase

c0 :

bulk concentration

c1 :

initial concentration

c*:

equilibrium concentration

de :

thickness of electrolyte layer

dL :

thickness of liquid film

dm :

thickness of membrane

\(\mathop {d_t }\limits^ -\) :

equivalent thickness defined by Eq. (20)

\(\mathop d\limits^ -\) :

equivalent thickness defined by Eq. (18)

d′:

equivalent thickness defined by Eq. (5 3)

De :

oxygen diffusivity of electrolyte layer

DL :

oxygen diffusivity of liquid film

Dm :

oxygen diffusivity of membrane

D *m :

oxygen diffusivity of membrane at base temperature

D0 :

oxygen diffusivity of medium

D1, D2 :

oxygen diffusivities

E:

activation energy for oxygen permeation

ED :

activation energy for oxygen diffusion

F:

Faraday's constant (96,500 coulombs/g-equivalent)

G:

gas flow rate

H:

Henry's Law constant

H:

heat of solution

I:

oxygen current

IG :

probe current in gas phase

IL :

probe current in liquid phase

Is :

steady-state current

It :

transient current

IT :

oxygen current as function of temperature

J:

oxygen flux

k:

probe constant defined by Eqs. (11) or (19)

ke :

mass transfer coefficient of electrolyte layer

kL :

liquid phase mass transfer coefficient

kLM :

mass transfer coefficient of liquid film around membrane

KM :

Michaelis-Menten constant

km :

mass transfer coefficient of membrane

k0 :

zeroth order reaction constant

K0 :

overall mass transfer coefficient

L:

quantity defined by Eq. (55)

N:

number of electrons per mole of oxygen reduced

p:

oxygen partial pressure

pe :

oxygen partial pressure at electrolyte/membrane interface

pm :

oxygen partial pressure at membrane/liquid interface

p′m :

xygen partial pressure defined by Eq. (57)

p0 :

oxygen partial pressure of bulk medium

Pe :

oxygen permeability of electrolyte layer

PL :

oxygen permeability of liquid film

Pm :

oxygen permeability of membrane

r:

distance from center of cathode

r0 :

radius of cathode

R:

gas law constant or reaction rate

RL :

oad resistance

RT :

resistance of thermistor

s:

quantity defined by Eq. (29)

Sm :

oxygen solubility of membrane

S *m :

oxygen solubility of membrane at base temperature

S0 :

oxygen solubility of medium

Sw :

oxygen solubility of water

t:

time

T:

absolute temperature

v:

liquid velocity

vc :

critical liquid velocity

V:

voltage drop

Vg :

volume of gas absorbed

VG :

volume of dispersed gas phase

VL :

volume of liquid

Vs :

volume of absorbing solvent

VT :

voltage drop across thermistor

x:

distance from the surface of cathode

a:

Bunsen coefficient defined by Eq. (36)

μ1, μ2:

liquid viscosities

Γ95% :

95% response time

Γ:

normalized probe response defined by Eq. (39)

11 References

  1. Adams, A.P., Morgan-Hughes, J.O., Sykes, M.K.: Anesthesiology 22, 575 (1967)

    Google Scholar 

  2. Aiba, S., Ohashi, M., Huang, S.Y.: Ind. Eng. Chem. Fundam. 7, 497 (1968)

    Google Scholar 

  3. Aiba, S., Huang, S.Y.: J. Ferment. Technol. 47, 372 (1969)

    Google Scholar 

  4. Aiba, S., Huang, S.Y.: Chem. Eng. Sci. 24, 1149 (1969)

    Google Scholar 

  5. Aiba, S., Humphrey, A.E., Mills, N.: Biochemical Engineering, 2nd ed. New York: Academic Press 1973

    Google Scholar 

  6. Albanese, R.A.: J. Theor. Biol. 33, 91 (1971)

    Google Scholar 

  7. ASTM D1589-60, Annual Book of ASTM Standards, Part 31, p. 438 (1978)

    Google Scholar 

  8. Bandyopadhay, B., Humphrey, A.E.: Biotechnol. Bioeng. 9, 533 (1967)

    Google Scholar 

  9. Barr, R.E., Tang, T.E., Hahn, A.W.: Adv. Exp. Med. Biol. 94, 17 (1978)

    Google Scholar 

  10. Battino, R., Clever, H.L.: Chemical Reviews 66, 395 (1966)

    Google Scholar 

  11. Baumgärtl, H., Lübbers, D.W.: In: Oxygen supply. Kessler, M., Bruley, D.F., Clark, L.C., Lübbers, D.W., Silver, I.A., Strauss, J. (eds.), p. 130. London: University Park Press 1973

    Google Scholar 

  12. Baumgärtl, H., Grünewald, W., Lübbers, D.W.: Pflügers Arch. 347, 49 (1974)

    Google Scholar 

  13. Beckman Technical Bulletine, Fieldlab Oxygen Analyzer, Beckman Instr. 1974

    Google Scholar 

  14. Beechey, R.B., Ribbons, D.W.: Methods in Microbiology, Vol. 6B, p. 25 (1972)

    Google Scholar 

  15. Benedeck, A.A., Heideger, W.J.: Water Res. 4 (9), 627 (1970)

    Google Scholar 

  16. Berkenbosch, A., Riedstra, J.W.: Acta Physiol. Pharmacol. Neerl. 12, 144 (1963)

    Google Scholar 

  17. Berkenbosch, A.: Acta Physiol. Pharmacol. Neerl. 14, 300 (1967)

    Google Scholar 

  18. Bicher, H.I., Knisely, M.H.: J. Appl. Physiol. 28, 387 (1970)

    Google Scholar 

  19. Biomarine Industries, Tech. Bulletin: OM322-675, Malvern, Pennsylvania (1975)

    Google Scholar 

  20. Bird, B.D., Williams, J., Whitman, J.G.: Brit. J. Anaesth. 46, 249 (1974)

    Google Scholar 

  21. Borkowski, J.D., Johnson, M.J.: Biotechnol. Bioeng. 9, 635 (1967)

    Google Scholar 

  22. Bourdaud, D., Lane, A.G.: Biotechnol. Bioeng. 16, 279 (1974)

    Google Scholar 

  23. Briggs, R., Viney, M.: J. Sci. Instr. 41, 78 (1964)

    Google Scholar 

  24. Brookman, J.S.G.: Biotechnol. Bioeng. 11, 323 (1969)

    Google Scholar 

  25. Brown, D.E.: In: Methods in microbiology. Norris, J.R., Ribbons, D.W. (eds.), Vol. 2, p. 125, 1970

    Google Scholar 

  26. Bühler, H., Ingold, W.: Process Biochem., p. 19, April (1976)

    Google Scholar 

  27. Bungay III., H.R., Huang, M.Y., Sanders, W.M.: Amer. Inst. Chem. Eng. J. 19, 373 (1973)

    Google Scholar 

  28. Bungay III, H.R., Whalen, W.J., Sanders, W.M.: Biotechnol. Bioeng. 11, 765 (1969)

    Google Scholar 

  29. Carey, F.G., Teal, J.M.: J. Appl. Physiol. 20, 1074 (1965)

    Google Scholar 

  30. Carrit, D.E., Kanwisher, J.W.: Anal. Chem. 31, 5 (1959)

    Google Scholar 

  31. Clark, L.C.: Trans. Am. Soc. Artif. Organs. 2, 41 (1956)

    Google Scholar 

  32. Clark, L.C.: Biotech. Bioeng. Symp. 3, 377 (1972)

    Google Scholar 

  33. Clark, L.C., Clark, E.W.: Adv. Exp. Med. Bio. 37A, 127 (1973)

    Google Scholar 

  34. Cobbold, R.S.C.: Transducers for biomedical measurements. New York: John Wiley and Sons 1974

    Google Scholar 

  35. Danckwerts, P.V.: Gas-liquid reactions, p. 18. New York: McGraw Hill 1970

    Google Scholar 

  36. Dang, N.D.P., Karrer, D.A., Dunn, I.J.: Biotechnol. Bioeng. 19, 853 (1977)

    Google Scholar 

  37. Davies, P.W.: In: Physical techniques in biological research 4, 137 (1961)

    Google Scholar 

  38. Davies, P.W., Brink, F., Jr.: Rev. Sci. Instr. 13, 524 (1942)

    Google Scholar 

  39. Döhring, W., Diefenthaler, K., Barnikol, W.K.: In: Oxygen supply. Kessler, M., Bruley, D.F., Clark, L.C., Lübbers, D.W., Silver, I.A., Strauss, J. (eds.), p. 86. London: University Park Press 1973

    Google Scholar 

  40. Dunn, I.J., Einsele, A.: J. Appl. Chem. Biotechnol. 25, 707 (1975)

    Google Scholar 

  41. Eberhard, P., Mindt, W., Jann, F., Hammacher, K.: Med. Biol. Eng. 13, 436 (1975)

    Google Scholar 

  42. Elsworth, R.: Brit. Chem. Eng., p. 63, Feb. (1972)

    Google Scholar 

  43. Evangelista, R., Gorin, N.H., Hamilton, W.J.: Power 121, 83 (1977)

    Google Scholar 

  44. Evans, D.H., Lingane, J.J.: Electroanal. Chem. 6, 283 (1963)

    Google Scholar 

  45. Fatt, I.: J. Appl. Physiol. 19, 326 (1964)

    Google Scholar 

  46. Fatt, I.: Anal. N. Y. Acad. Sci. 148, 81 (1968)

    Google Scholar 

  47. Fatt, I.: Polarographic oxygen sensors. Ohio: CRC Press 1976

    Google Scholar 

  48. Fatt, I., St. Helen, R.: J. Appl. Physiol. 27, 435 (1969)

    Google Scholar 

  49. Flynn, D.S., Kilburn, D.G., Lilly, M.D., Webb, F.C.: Biotechnol. Bioeng. 9, 623 (1967)

    Google Scholar 

  50. Forbes, M., Lynn, S.: Amer. Inst. Chem. Eng. J. 21, 763 (1975)

    Google Scholar 

  51. Friesen, W.O., McIlory, M.B.: J. Appl. Physiol. 29, 258 (1970)

    Google Scholar 

  52. Gal-Or, B., Hauk, J.P., Hoelscher, H.E.: Int. J. Heat. Mass Transfer 10 1559 (1967)

    Google Scholar 

  53. Gelder, R.L., Neville, J.F.: Amer. J. Clin. Path. 55, 325 (1971)

    Google Scholar 

  54. Gobe, J.H., Phillips, T.: Biotechnol. Bioeng. 6, 491 (1964)

    Google Scholar 

  55. Goldstick, T.K., Fatt, I.: Chem. Eng. Prog. Symp. Ser. 66, 101 (1970)

    Google Scholar 

  56. Grünewald, W.: Pflügers Arch. 320, 24 (1970)

    Google Scholar 

  57. Grünewald, W.: Pflügers Arch. 322, 109 (1971)

    Google Scholar 

  58. Grünewald, W.: In: Oxygen supply. Kessler, M., Bruley, D.F., Clark, L.C., Lubbers, D.W., Silver, I.A., Strauss, J. (eds.), p. 160. London: University Park Press 1973

    Google Scholar 

  59. Harrison, D.E.F., Melbourne, K.V.: Biotechnol. Bioeng. 12, 633 (1970)

    Google Scholar 

  60. Harrison, D.E.F.: J. Appl. Chem. Biotech. 22, 417 (1972)

    Google Scholar 

  61. Harrison, D.E.F.: In: Measurement of oxygen. Degn, H., Balslev, I., Brook, R. (eds.). New York: Elsevier Scientific Publishing Co. 1976

    Google Scholar 

  62. Heineken, F.G.: Biotechnol. Bioeng. 12, 145 (1970)

    Google Scholar 

  63. Heineken, F.G.: Biotechnol. Bioeng. 8, 599 (1971)

    Google Scholar 

  64. Hitchman, M.L.: Measurement of dissolved oxygen. New York: John Wiley and Sons 1978

    Google Scholar 

  65. Hospodka, J., Caslavsky, Z.: Folia Microbiol. (Prague) 10, 186 (1965)

    Google Scholar 

  66. Huang, M.Y., Bungay III., H.R.: Biotechnol. Bioeng. 15, 1193 (1973)

    Google Scholar 

  67. Hulands, G.H., Nunn, J.F., Paterson, G.M.: Brit. J. Anaesth. 42, 9 (1970)

    Google Scholar 

  68. Hwang, S.T., Choi, C.K., Kammermeyer, K.: Sep. Sci. 9, 461 (1974)

    Google Scholar 

  69. Jensen, O.J., Jacobsen, T., Thomsen, K.: J. Electroanal. Chem. 87, 203 (1978)

    Google Scholar 

  70. Jeter, H.W., Foyn, E., King, M., Gordon, L.I.: Limnol. Oceanog. 17, 288 (1972)

    Google Scholar 

  71. Johnson, M.J., Borkowski, J., Engblom, C: Biotech. Bioeng. 6, 457 (1964)

    Google Scholar 

  72. Jones, C, Pust, H., Lauer, J.: Analysis Instrumentation 14, 51 (1976)

    Google Scholar 

  73. Kessler, M.: In: Oxygen supply. Kessler, M., Bruley, D.F., Clark, L.C., Lübbers, D.W., Silver, I.A., Strauss, J. (eds.), p. 81. London: University Park Press 1973

    Google Scholar 

  74. Key, A., Parker, D., Davies, R.: Phys. Med. Biol. 15, 569 (1970)

    Google Scholar 

  75. Kimmich, H.P., Kreuzer, F.K.: Prog. Resp. Res. 3, 100 (1969)

    Google Scholar 

  76. Kinsey, D.W., Bottomley, R.A.: J. Inst. Brewing 69, 164 (1963)

    Google Scholar 

  77. Kjaergaard, L.: Biotechnol. Bioeng. 18, 729 (1976)

    Google Scholar 

  78. Kliner, A.A.: Brit. Chem. Eng. 10, 537 (1965)

    Google Scholar 

  79. Kok, R., Zajic, J.E.: Can. J. Chem. Eng. 51, 782 (1973)

    Google Scholar 

  80. Kok, R., Zajic, J.E.: Biotechnol. Bioeng. 17, 527 (1975)

    Google Scholar 

  81. Kok, R.: Biotechnol. Bioeng. 18, 729 (1976)

    Google Scholar 

  82. Kolthoff, I.M., Lingane, J.J.: Polarography. New York: Interscience 1952

    Google Scholar 

  83. Krebs, W.M., Haddad, I.A.: In: Developments in industrial microbiology, Vol. 13. Washington D.C.: Chap. 11. Am. Inst. Biol. Sci. 1972

    Google Scholar 

  84. Kreuzer, F., Kimmich, H.P.: In: Measurement of oxygen. Degn, H., Balslev, I., Brook, R. (eds.), p. 123. New York: Elsevier Sci. Pub. Co. 1976

    Google Scholar 

  85. LaForce, R.C.: In: Polarographic oxygen sensors. Fatt, I. (ed.). Ohio: CRC Press 1976

    Google Scholar 

  86. Lee, Y.H.: Ph. D. Thesis. Purdue University 1977

    Google Scholar 

  87. Lee, Y.H., Tsao, G.T., Wankat, P.C.: Ind. Eng. Chem. Fundam. 17, 59 (1978)

    Google Scholar 

  88. LeFevre, M.E.: J. Appl. Physiol. 26, 844 (1969)

    Google Scholar 

  89. LeFevre, M.E., Wyssbrad, H.R., Brodsky, W.A.: Bioscience 20, 761 (1970)

    Google Scholar 

  90. Linek, V.: Biotechnol. Bioeng. 14, 285 (1972)

    Google Scholar 

  91. Linek, V., Sobotka, M., Prokop, A.: Biotech. Bioeng. Symp. 4, 429 (1973)

    Google Scholar 

  92. Linek, V., Vacek, V.: Biotechnol. Bioeng. 18, 1537 (1976)

    Google Scholar 

  93. Linek, V., Benes, P.: Biotechnol. Bioeng. 19, 741 (1977)

    Google Scholar 

  94. Linek, V., Vacek, V.: Biotechnol. Bioeng. 19, 983 (1977)

    Google Scholar 

  95. Linek, V., Vacek, V.: Biotechnol. Bioeng. 20, 305 (1978)

    Google Scholar 

  96. Linek, V., Benes, P.: Biotechnol. Bioeng. 20, 903 (1978)

    Google Scholar 

  97. Lipner, H., Witherspoon, L.R., Champeaux, V.C.: Anal. Chem. 36, 204 (1964)

    Google Scholar 

  98. Liu, M.S., Branion, R.M.R., Duncan, D.W.: Biotechnol. Bioeng. 15, 213 (1973)

    Google Scholar 

  99. Lloyd, B.B., Seaton, B.: J. Physiol. (London) 207, 29 (1970)

    Google Scholar 

  100. Lübbers, D.W.: Progr. Resp. Res. 3, 112 (1969)

    Google Scholar 

  101. Lübbers, D.W., Baumgärtl, H., Fabel, H., Huch, A., Kessler, M., Kunze, K.: Progr. Resp. Res. 3, 136 (1969)

    Google Scholar 

  102. Lundsgaard, J.S.: In: Measurement of oxygen. Degn, H., Balslev, J., Brook, R. (eds.), p. 159. New York: Elsevier Scientific Pub. Co. 1976

    Google Scholar 

  103. Lundsgaard, J.S., Gronlund, J., Degn, H.: Biotechnol. Bioeng. 20, 809 (1978)

    Google Scholar 

  104. Mackereth, F.J.H.: Rev. Sci. Instr. 41, 38 (1964)

    Google Scholar 

  105. Mancy, K.H., Westgarth, W.C.: J. Water Pollut. Control 34, 1037 (1962)

    Google Scholar 

  106. Mancy, K.H., Okun, D.A., Reilley, C.N.: J. Electroanal. Chem. 4, 65 (1962)

    Google Scholar 

  107. Mclennan, D.G., Pirt, S.J.: J. Gen. Microbiol. 45, 289 (1966)

    Google Scholar 

  108. Mertu, K., Dunn, I.J.: Biotechnol. Bioeng. 18, 591 (1976)

    Google Scholar 

  109. Misra, H.P., Fridovich, I.: Anal. Biochem. 70, 632 (1976)

    Google Scholar 

  110. Modern Plastics Encyclopedia 51 (10A), 730 (1974–1975)

    Google Scholar 

  111. Moian, F., Kettel, L.J., Cugell, D.W.: J. Appl. Physiol. 21, 725 (1966)

    Google Scholar 

  112. Morisi, G., Gualandi, G.: Biotechnol. Bioeng. 8, 625 (1965)

    Google Scholar 

  113. Newley, R., Macpherson, P.B.: Wear 45, 395 (1977)

    Google Scholar 

  114. Niedrach, L.W., Stoddard, W.H.: U.S. Patent 3, 703, 457 (1972)

    Google Scholar 

  115. Nikolaev, P.I., Polyanskii, V.P., Kantere, V.M., Kharitonova, E.V.: Theoretical foundations of Chem. Eng. (Engl. Translation) 10, 13 (1976)

    Google Scholar 

  116. Ohashi, M., Watabe, T.: Paper presented in 2nd International Conf. on Computer Applications in Fermentation Tech., August 28–30, U. of Penn., U.S.A. 1978

    Google Scholar 

  117. Orbispheres Tech. Bull., Orbisphere Lab., York, Maine (1976)

    Google Scholar 

  118. Phillips, D.H., Johnson, M.J.: Biochem. Microbiol. Technol. Eng. 3, 261 (1961)

    Google Scholar 

  119. Pittman, R.W.: Nature 195, 449 (1962)

    Google Scholar 

  120. Radlett, P.J., Breame, A.J., Telling, R.C.: Lab. Pract. 21, 81 (1972)

    Google Scholar 

  121. Parker, D.H., Clifton, J.S.: Phys. Med. Biol. 12, 193 (1967)

    Google Scholar 

  122. Reeves, J.R.: Water & Sewage Works, Feb 44 (1976)

    Google Scholar 

  123. Rexnord Technical Bulletine 773, Rexnord ppb DO analyzer, Rexnord Co., Malvern, Pennsylvania 1977

    Google Scholar 

  124. Robinson, C.W., Wilke, C.R.: Biotechnol. Bioeng. 15, 755 (1973)

    Google Scholar 

  125. Roughton, F.J.W., Scholander, P.F.: J. Biol. Chem. 148, 541 (1943)

    Google Scholar 

  126. Rowley, B.I.: In: Automation, mechanization, and data handling in microbiology. Baillie, A., Gilbert, R.J. (eds.), p. 163. New York: Acad. Press 1970

    Google Scholar 

  127. Sawyer, D.T., Interrante, L.V.: J. Electroanal. Chem. 2, 310 (1961)

    Google Scholar 

  128. Schuler, R., Kreuzer, F.: Progr. Resp. Res. 3, 64 (1969)

    Google Scholar 

  129. Schuchhardt, S., Lösse, B.: In: Oxygen supply. Kessler, M., Bruley, D.F., Clark, L.C., Lübbers, D.W., Silver, I.A., Strauss, J. (eds.), p. 108. London: University Press 1973

    Google Scholar 

  130. Severinghaus, J.W.: Clin. Chem. 9, 727 (1963)

    Google Scholar 

  131. Severinghaus, J.W.: Annal. N.Y. Acad. Sci. 148, 115 (1968)

    Google Scholar 

  132. Siedell, A., Linke, W.F.: Solubilities of inorganic and metal organic compounds, 4th ed., Vol. 2. Amer. Chem. Soc. 1965

    Google Scholar 

  133. Silver, I.: Med. Electron. Biol. Eng. 1, 547 (1963)

    Google Scholar 

  134. Silver, I.A.: Med. Elect. Biol. Eng. 3, 377 (1965)

    Google Scholar 

  135. Silver, I.A.: Adv. in Chem. Ser. 118, 343 (1973)

    Google Scholar 

  136. Silver, I.A.: Adv. Expt. Med. Biol. 37A, 7 (1974)

    Google Scholar 

  137. Siu, W., Cobbold, R.S.C.: Med. Biol. Eng. 14, 109 (1976)

    Google Scholar 

  138. Stuck, J.D., Howell, J.A., Cullinan, H.T., Jr.: J. Theor. Biol. 31, 509 (1971)

    Google Scholar 

  139. Tsao, G.T., Lee, D.D.: Amer. INst. Chem. Eng. J. 21, 979 (1975)

    Google Scholar 

  140. Tsao, G.T., Lee, Y.H.: Ann. Reports in Ferm. Proc. 1, 115 (1977)

    Google Scholar 

  141. Tuffile, C.M., Pinho, F.: Biotechnol. Bioeng. 12, 849 (1970)

    Google Scholar 

  142. Vincent, A.: Process Biochem. April, 19 (1974)

    Google Scholar 

  143. Votruba, J., Sobotka, M.: Biotechnol. Bioeng. 18, 1815 (1976)

    Google Scholar 

  144. Votruba, J., Sobotka, M., Prokop, A.: Biotechnol. Bioeng. 19, 435 (1977)

    Google Scholar 

  145. Votruba, J., Sobotka, M., Prokop, A.: Biotechnol. Bioeng. 20, 913 (1978)

    Google Scholar 

  146. Wennberg, L.A.: J. Appl. Physiol. 38, 540 (1975)

    Google Scholar 

  147. Wernau, W.C., Wilke, C.R.: Biotechnol. Bioeng. 15, 571 (1973)

    Google Scholar 

  148. Whalen, W.J., Riley, J., Nair, P.: J. Appl. Physiol. 23, 798 (1967)

    Google Scholar 

  149. Whalen, W.J.: Progr. Resp. Res. 3, 158 (1969)

    Google Scholar 

  150. Wilke, C.R., Chang, P.: Amer. Inst. Chem. Eng. J. 1, 264 (1955)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

T. K. Ghose N. Blakebrough A. Fiechter

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag

About this paper

Cite this paper

Lee, Y.H., Tsao, G.T. (1979). Dissolved oxygen electrodes. In: Ghose, T.K., Blakebrough, N., Fiechter, A. (eds) Advances in Biochemical Engineering, Volume 13. Advances in Biochemical Engineering, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3540094687_6

Download citation

  • DOI: https://doi.org/10.1007/3540094687_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09468-5

  • Online ISBN: 978-3-540-35216-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics