Skip to main content

Preclinical development of Alimta™ (Pemetrexed, LY231514), a multitargeted antifolate

  • Chapter
Advances in Targeted Cancer Therapy

Part of the book series: Progress in Drug Research ((PDR,volume 63))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jackson RC (1984) Biological effects of folic acid antagonists with antineoplastic activity. Pharmacol Ther 25: 61–82

    Article  CAS  PubMed  Google Scholar 

  2. Allegra CJ (1990) Antifolates. In: BA Chabner, JM Collins (eds): Cancer chemotherapy: principles and practice. JB Lippincott, New York, 110

    Google Scholar 

  3. Schultz RM (1995) Newer antifolates in cancer therapy. In: E Jucker (ed): Progress in Drug Research, Vol. 44. Birkhauser Verlag, Basel, 129–157

    Google Scholar 

  4. Grindey GB, Shih C, Barnett CJ, Pearce HL, Engelhardt JA, Todd GC, Rinzel SM, Worzalla JF, Gossett LS, Everson TP et al (1992) LY231514, a novel pyrrolopyrimidine antifolate that inhibits thymidylate synthase (TS). Proc Am Assoc Cancer Res 33: 411

    Google Scholar 

  5. Taylor EC, Kuhnt D, Shih C, Rinzel SM, Grindey GB, Barredo J, Jannatipour M, Moran RG (1992) A dideazatetrahydrofolate analogue lacking a chiral center at C-6, N-[4-[2-(2-amino-3,4-dihydryo-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl]-benzoyl]-L-glutamic acid, is an inhibitor of thymidylate synthase. J Med Chem 35: 4450–4454

    Article  CAS  PubMed  Google Scholar 

  6. Schultz RM, Andis SL, Bewley JR, Chen VJ, Habeck LL, Mendelsohn LG, Patel VF, Rutherford PG, Self TD, Shih C et al (1996) Antitumor activity of the multitargeted antifolate LY231514.Proc Am Assoc Cancer Res 37: 380

    Google Scholar 

  7. Schultz RM, Andis S, Chen V, Mendelsohn L, Patel V, Shih C, Houghton J (1996) Comparative antitumor activity of the multitargeted antifolate LY2315 14 and the thymidylate synthase (TS) inhibitor ZD1694. NCI EORTC Symp New Drugs Cancer Ther, abstr 290

    Google Scholar 

  8. Shih C, Chen VJ, Gossett LS, Gates SB, MacKellar WC, Habeck LL, Shackelford KA, Mendelsohn LG, Soose DJ, Patel VF et al (1997) LY231514, a pyrrolo [2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res 57: 1116–1123

    CAS  PubMed  Google Scholar 

  9. Habeck LL, Shih C, Gossett LS, Leitner TA, Schultz RM, Andis SL, Moran RG, Mendelsohn LG (1995) Substrate specificity of mammalian folylpolyglutamate synthetase for 5,10-dideazatetrahydrofolate analogs. Mol Pharmacol 48: 326–333

    CAS  PubMed  Google Scholar 

  10. Touroutogolou N, Pazdur R (1996) Thymidylate synthase inhibitors. Clin Cancer Res 2: 227–243

    Google Scholar 

  11. Schultz RM, Chen VJ, Bewley JR, Roberts EF, Shih C, Dempsey JA (1999) Biological activity of the multitargeted antifolate, MTA (LY231514), in human cell lines with different resistance mechanisms to antifolate drugs. Semin Oncol 26,suppl 6: 68–73

    CAS  PubMed  Google Scholar 

  12. Schultz RM, Chen VJ, Bertino JR (1999) The multitargeted antifolate: Shifting enzymatic targets during development of antifolate resistance. Abstracts of the AACR-NCIEORTC Internation Conference on Molecular Targets of Cancer Therapy (November 16–19, Washington). Abst 654

    Google Scholar 

  13. Chabner BA, Allegra CJ, Curt GA, Clendeninn NJ, Baram J, Koizumi S, Drake JC, Jolivet J (1985) Polyglutamation of methotrexate: Is methotrexate a prodrug? J Clin Invest 76: 907–912

    CAS  PubMed  Google Scholar 

  14. Matherly LH (2001) Molecular and cellular biology of the human reduced folate carrier. Prog Nucleic Acid Res Mol Biol 67: 131–162

    CAS  PubMed  Google Scholar 

  15. Schultz RM, Andis SL, Shackelford KA, Gates SB, Ratnam M, Mendelsohn LG, Shih C, Grindey GB (1995) Role of membrane-associated folate binding protein in the cytotoxicity of antifolates in KB, IGROV1, and L1210A cells. Oncol Res 7: 97–102

    CAS  PubMed  Google Scholar 

  16. Kamen BA, Capdevila A (1986) Receptor-mediated folate accumulation is regulated by the cellular folate content. Proc Natl Acad Sci USA 83: 5983–5987

    CAS  PubMed  Google Scholar 

  17. Westerhof GR, Schornagel JH, Kathmann I, Jackman AL, Rosowsky A, Forsch RA, Hynes JB, Boyle FT, Peters GJ, Pinedo HM, Jansen G (1995) Carrier-and receptor-mediated transport of folae antagonists targeting folate-dependent enzymes: Correlates of molecular structure and biological activity. Mol Pharmacol 48: 459–471

    CAS  PubMed  Google Scholar 

  18. Antony AC (1992) The biological chemistry of folate receptors. Blood 79: 2807–2820

    CAS  PubMed  Google Scholar 

  19. Coney LR, Tomassetti A, Carayannopoulos L, Frasca V, Kamen BA, Colnaghi MI, Zurawski VR (1991) Cloning of a tumor-associated antigen: MOv8 and MOv19 antibodies recognize a folate-binding protein. Cancer Res 51: 6125–6132

    CAS  PubMed  Google Scholar 

  20. Dixon KH, Mulligan T, Chung KN, Elwood PC, Cowan KH (1992) Effects of folate receptor expression following stable transfection into wild type and methotrexate transport-deficient ZR-75-1 human breast cancer cells. J Biol Chem 26: 24140–24147

    Google Scholar 

  21. Zhao R, Hanscom M, Chattopadhyay S, Goldman ID (2004) Selective preservation of pemetrexed pharmacological activity in HeLa cells lacking the reduced folate carrier: Association with the presence of a secondary transport pathway. Cancer Res 64: 3313–3319

    CAS  PubMed  Google Scholar 

  22. Pizzorno G, Moroson BA, Cashmore AR, Russelo O, Mayer JR. Galivan J, Bunni MA, Priest DG, Beardsley GP (1995) Multifactorial resistance to 5,10-dideazatetrahydrofolic acid in cell lines derived from human lymphoblastic leukemia CCRF-CEM. Cancer Res 55: 566–573

    CAS  PubMed  Google Scholar 

  23. Shane B (1989) Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam Horm 45: 263–335

    CAS  PubMed  Google Scholar 

  24. Sun X, Cross JA, Bognar AL (2001) Folate-binding triggers the activation of folylpolyglutamate synthetase. J Mol Biol 310: 1067–1078

    Article  CAS  PubMed  Google Scholar 

  25. Purcell WT, Ettinger DS (2003) Novel antifolate drugs. Curr Oncol Rep 5: 114–125

    PubMed  Google Scholar 

  26. Goldman ID, Zhao R (2002) Molecular, biochemical, and cellular pharmacology of pemetrexed. Semin Oncol 29,suppl 18: 3–17

    PubMed  Google Scholar 

  27. Chen VJ, Bewley JR, Smith PG, Andis SL, Schultz RM, Iversen PW, Tonkinson JL, Shih C (2000) An assessment of the antithymine and antipurine characteristics of MTA (LY231514) in CCRF-CEM cells. Adv Enzyme Regul 40: 143–154

    CAS  PubMed  Google Scholar 

  28. Rhee MS, Ryan TJ, Gallivan J (1999) Glutamyl hydrolase and the multitargeted antifolate LY231514. Cancer Chemother Pharmacol 44: 427–432

    Article  CAS  PubMed  Google Scholar 

  29. Sigmond J, Backus, HHJ, Wouters D, Temmink OH, Jansen G, Peters GJ (2003) Induction of resistance to the multitargeted antifolate Pemetrexed (ALIMTA) in WiDr human colon cancer cells is associated with thymidylate synthase overexpression. Biochem Pharmacol 66: 431–438

    Article  CAS  PubMed  Google Scholar 

  30. Schultz RM, Bewley JR, Dempsey JA, Roberts EF, Shih C, Chen VJ (1998) Mechanisms of acquired resistance to the multitargeted antifolate (MTA, LY231514) in human leukemia and colon carcinoma cell lines continuously exposed to stepwise increasing drug concentrations. Ann Oncol 9,suppl 2: 587

    Google Scholar 

  31. Jackman AL, Kelland LR, Kimbell R, Brown M, Gibson W, Aherne GW, Hardcastle A, Boyle FT (1995) Mechanisms of acquired resistance to the quinazoline thymidylate synthase inhibitor ZD1694(Tomudex) in one mouse and three human cell lines. Br J Cancer 71: 914–924

    CAS  PubMed  Google Scholar 

  32. Curtin NJ, Hughes AN (2001) Pemetrexed disodium, a novel antifolate with multiple targets. Lancet Oncol 2: 298–306

    Article  CAS  PubMed  Google Scholar 

  33. Freemantle SJ, Jackman AL, Kelland LR, Calvert AH, Lunec J (1995) Molecular characterization of two cell lines selected for resistance to the folate-based thymidylate synthase inhibitor, ZD1694. Br J Cancer 71: 925–930

    CAS  PubMed  Google Scholar 

  34. van Triest B, Pinedo HM, van Hensbergen Y, Smid K, Telleman F, Schoenmakers PS, van der Wilt CL, van Laar JAM, Noordhuis P, Jansen G et al (1999) Thymidylate synthase level as the main predictive parameter for sensitivity to 5-fluorouracil, but not for folate-based thymidylate synthase inhibitors, in 13 nonselected colon cancer cell lines. Clin Cancer Res 5: 643–654

    PubMed  Google Scholar 

  35. Pestalozzi BC, McGinn CJ, Kinsella TJ, Drake JC, Glennon MC, Allegra CJ, Johnston PG (1995) Increase thymidylate synthase protein levels are principally associated with proliferation but not cell cycle phase in asynchronous human cancer cells. Br J Cancer 71: 1151–1157

    CAS  PubMed  Google Scholar 

  36. Liani E, Rothem L, Bunni MA, Smith CA, Jansen G, Assaraf YG (2003) Loss of folylopoly-γ-glutamate synthetase activity is a dominant mechanism of resistance to polyglutamylation-dependent novel antifolates in multiple human leukemia sublines. Int J Cancer 103: 487–599

    Article  Google Scholar 

  37. Lu K, Yin M-B, McGuire JJ, Bonmassar E, Rustum YM (1995) Mechanisms of resistance to N-[5-[n-(3,4-dihydro-2-methyl-4-oxoquinazolin-6-ylmethyl)-N-methylamino]-2-thenoyl]-L-glutamic acid (ZD1694), a folate-based thymidylate synthase inhibitor, in the HCT-8 human ileocecal adenocarcinoma cell line. Biochem Pharmacol 50: 391–398

    CAS  PubMed  Google Scholar 

  38. Wang Y, Zhao R, Goldman ID (2003) Decreased expression of the reduced folate carrier and folylpolyglutamate synthetase is the basis for acquired resistance to the pemetrexed antifolate (LY231514) in an L1210 murine leukemia cell line. Biochem Pharmacol 65: 1163–1170

    CAS  PubMed  Google Scholar 

  39. Takemura Y, Kobayashi H, Gibson W, Kimbell R, Miyachi H, Jackman AL (1996) The influence of drug-exposure conditions on the development of resistance to methotrexate or ZD1694 in cultured human leukaemia cells. Int J Cancer 66: 29–36

    Article  CAS  PubMed  Google Scholar 

  40. Rhee MS, Ryan TJ, Gallivan J (1999) Glutamy hydrolase and the multitargeted antifolate LY231514. Cancer Chemother Pharmacol 44: 427–432

    Article  CAS  PubMed  Google Scholar 

  41. Tonkinson JL, Marder P, Andis SL, Schultz RM, Gossett LS, Shih C, Mendelsohn LG (1997) Cell cycle effects of antifolate antimetabolites: implications for cytotoxicity and cytostasis. Cancer Chemother Pharmacol 39: 521–531

    Article  CAS  PubMed  Google Scholar 

  42. Smith SG, Lehman NL, Moran RG (1993) Cytotoxicity of antifolate inhibitors of thymidylate and purine synthesis to WiDr colonic carcinoma cells. Cancer Res 53: 5697–5706

    CAS  PubMed  Google Scholar 

  43. Van Triest B, Pinedo HM, Giaccone G, Peters GJ (2000) Downstream molecular determinants of response to 5-fluorouracil and antifolate thymidylate synthase inhibitors. Ann Oncol 11: 385–391

    PubMed  Google Scholar 

  44. Borsa J, Whitmore GF (1969) Cell killing studies on the mode of action of methotrexate on L-cells in vitro. Cancer Res 29: 737–744

    CAS  PubMed  Google Scholar 

  45. Kwok JBJ, Tattersall MHN (1991) Inhibition of 2-desamino-2-methyl-10-propargyl-5,8-dideazafolic acid cytotoxicity by 5,10-dideazatetrahydrofolate in L1210 cells with decrease in DNA fragmentation and deoxyadenosine triphosphate pools. Biochem Pharmacol 42: 507–513

    Article  CAS  PubMed  Google Scholar 

  46. Taylor W, Slowiaczek P, Francis PR, Tattersall MHN (1982) Biochemical and cell cycle perburbations in methotrexate-treated cells. Mol Pharmacol 21: 204–210

    CAS  PubMed  Google Scholar 

  47. Houghton JA, Harwood FG, Houghton PJ (1994) Commitment to thymineless death is influenced by cell cycle control processes. Proc Am Assoc Cancer Res 35: 316

    Google Scholar 

  48. Fisher TC, Milner AE, Gregory CD, Jackman Al, Aherme GW (1993) bcl-2 modulation of apoptosis induced by anticancer drugs: resistance to thymidylate stress is independent of classical resistance pathways. Cancer Res 53: 3321–3328

    CAS  PubMed  Google Scholar 

  49. Kisliuk RL (2000) Synergistic interactions among antifolates. Pharmacol Ther 85: 183–190

    Article  CAS  PubMed  Google Scholar 

  50. Faessel HM, Slocum HK, Jackson RC, Boritzki TJ, Rustum YM, Nair MG, Greco WR (1998) Super in vitro synergy between inhibitors of dihydrofolate reductase and inhibitors of other folate-requiring enzymes: the critical role of polyglutamylation. Cancer Res 58: 3036–3050

    CAS  PubMed  Google Scholar 

  51. Ferguson K, Boschelli D, Hoffman P, Oronsky A, Whitely J, Webber S, Gallivan J, Freisheim J, Hynes J, Kerwar SS (1990) Synergy between 5,10-dideaza-5,6,7,8-tetrahydrofolic acid and methotrexate in mice bearing L1210 tumors. Cancer Chemother Pharmacol 25: 173–176

    Google Scholar 

  52. Takemura Y, Jackman AL (1997) Folate-based thymidylate synthase inhibitors in cancer chemotherapy. Anticancer Drugs 8: 3–16

    CAS  PubMed  Google Scholar 

  53. Jackman AL, Taylor GA, Calvert AH, Harrap KR (1984) Modulation of the anti-metabolite effects. Effects of thymidine on the efficacy of the quinazoline-based thymidylate synthase inhibitor, CB3717. Biochem Pharmacol 33: 3269–3275

    Article  CAS  PubMed  Google Scholar 

  54. Jackman AL, Taylor GA, Gibson W, Kimbell R, Brown M, Calvert AH, Judson IR, Hughes LR (1991) ICI D1694, a quinazoline antifolate thymidylate synthase inhibitor that is a potent inhibitor of L1210 cell growth in vitro and in vivo, a new agent for clinical study. Cancer Res 51: 5579–5586

    CAS  PubMed  Google Scholar 

  55. Banks SD, Waters KA, Barrett LL, Dickerson S, Pendergast W, Smith GK (1994) Destruction of WiDr multicellular tumor spheroids with the novel thymidylate synthase inhibitor 1843U89 at physiological thymidine concentrations. Cancer Chemother Pharmacol 33: 455–459

    CAS  PubMed  Google Scholar 

  56. Nottebrock H, Then R (1977) Thymidine concentrations in serum and urine of different animal species and man. Biochem Pharmacol 26: 2175–2179

    Article  CAS  PubMed  Google Scholar 

  57. Houghton PJ, Houghton JA, Germain G, Torrance PM (1987) Development and characterization of a human colon adenocarcinoma xenograft deficient in thymidine salvage. Cancer Res 47: 2117–2122

    CAS  PubMed  Google Scholar 

  58. Schultz RM, Patel VF, Worzalla JF, Shih C (1999) Role of thymidylate synthase in the antitumor activity of the multitargeted antifolate, LY231514. Anticancer Res 19: 437–444

    CAS  PubMed  Google Scholar 

  59. Worzalla JF, Shih C, Schultz RM (1998) Role of folic acid in modulating the toxicity and efficacy of the multitargeted antifolate, LY231514. Anticancer Res 18: 3235–3240

    CAS  PubMed  Google Scholar 

  60. Houghton PJ, Houghton JA, Hazelton BJ, Radparvar S (1989) Biochemical mechanisms in colon xenografts: thymidylate synthase as a target for therapy. Invest New Drugs 7: 59–69

    Article  CAS  PubMed  Google Scholar 

  61. Schultz RM, Dempsey JA (2001) Sequence dependence of Alimta (LY231514, MTA) combined with doxorubicin in ZR-75-1 human breast carcinoma cells. Anticancer Res 21: 3209–3214

    CAS  PubMed  Google Scholar 

  62. Schultz RM, Dempsey JA, Kraus LA, Schmid SM, Calvete JA, Laws AL (1999) In vitro sequence dependence for the multitargeted antifolate (MTA, LY231514) combined with other anticancer agents. Eur J Cancer 35,suppl 4: S194

    Google Scholar 

  63. Tomkinson JL, Worzalla JF, Teng C-H, Mendelsohn LG (1999) Cell cycle modulation by a multitargeted antifolate, LY231514, increases the cytotoxicity and antitumor activity of gemcitabine in HT29 colon carcinoma. Cancer Res 59: 3671–3676

    Google Scholar 

  64. Adjei AA, Erlichman C, Thornton D (1998) Synergistic cytotoxicity of MTA (LY231514) and gemcitabine in vitro and in vivo. Ann Oncol 9,suppl 2: 168

    Google Scholar 

  65. Adjei AA, Erlichman C, Sloan JA (2000) Phase 1 and pharmacologic study of sequences of gemcitabine and the multitargeted antifolate agent in patients with advanced solid tumors. J Clin Oncol 8: 1748–1757

    Google Scholar 

  66. Tesei A, Ricotti L, dePaola F, Amadori D, Frassinet GL, Zoli W (2002) In vitro schedule-dependent interactions between the multitargeted antifolate LY231514 and gemcitabine in human colon adenocarcinoma cell lines. Clin Cancer Res 8: 233–239

    CAS  PubMed  Google Scholar 

  67. Dempsey JA, Laigle DK, Schultz RM (2000) Effect of the multitargeted antifolate (MTA, Alimta) on human mesothelioma cell lines. Proc Am Assoc Cancer Res 41: 127

    Google Scholar 

  68. Schultz RM, Dempsey JA, Teicher BA, Harrison DS, Shih C, Kraus LA, Schmid SM (1998) Interactions between the multitargeted antifolate (MTA, LY231514) and cisplatin in non-small cell lung cancer (NSCLC) cell lines. Proc Am Assoc Cancer Res 39: 308

    Google Scholar 

  69. Schultz R, Rothenberg M, Kourny M, Hankins WD, Kravtsov V (2000) Sequence dependence using combinations of ALIMTA (pemetrexed disodium, LY231514, MTA), gemcitabine and oxaliplatin in human colorectal carcinoma cell lines. Clin Cancer Res 6: 1078

    Google Scholar 

  70. van der Wilt CL, Kuiper CM, Peters GJ (1999) Combination studies with antifolates and 5-fluorouracil in colon cancer cell lines. Oncol Res 11: 383–391

    PubMed  Google Scholar 

  71. Backus HHJ, Pinedo HM, Wouters D, Padron JM, Molders N, van der Wilt CL, van Groeningen CJ, Jansen G, Peters GJ (2000) Folate depletion increases sensitivity of solid tumor cell lines to 5-fluorouracil and antifolates. Int J Cancer 87: 771–778

    Article  CAS  PubMed  Google Scholar 

  72. Jackson RD, Fry DW, Boritz K (1984) Biochemical pharmacology of the lipophilic antifolate, trimetrexate. Adv Enzyme Regul 22: 187–206

    CAS  PubMed  Google Scholar 

  73. Calvert H (1999) An overview of folate metabolism: features relevant to the action and toxicities of antifolate anticancer agents. Semin Oncol 26,suppl 6: 3–10

    CAS  PubMed  Google Scholar 

  74. Hanauske A-R, Chen V, Paolettti P, Niyikiza C (2001) Pemetrexed disodium: a novel antifolate clinically active against multiple solid tumors. Oncologist 6: 363–373

    Article  CAS  PubMed  Google Scholar 

  75. Worzalla JF, Self TD, Theobald KS, Schultz RM, Mendelsohn LG, Shih C (1997) Effects of folic acid on toxicity and antitumor activity of LY231514 multitargeted antifolate (MTA). Proc Am Assoc Cancer Res 38: 478

    Google Scholar 

  76. Alati T, Warzalla JF, Shih C, Bewley JR, Lewis S, Moran RG, Grindey GB (1996) Augmentation of the therapeutic activity of lometrexol [(6-R)5,10-dideazatetrahydrofolate] by oral folic acid. Cancer Res 56: 2331–2335

    CAS  PubMed  Google Scholar 

  77. Schmitz JC, Grindey GB, Schultz RM, Priest DG (1992) Impact of dietary folic acid on reduced folates in mouse plasma and tissues: relationship to dideazatetrahydrofolate sensitivity. Biochem Pharmacol 48: 319–325

    Google Scholar 

  78. Graul A, Tracy M, Castaner J (1998) Pemetrexed disodium. Drug Fut 23: 498–507

    CAS  Google Scholar 

  79. Norman P (2001) Pemetrexed disodium. Curr Opin Invest Drugs 2: 1611–1622

    CAS  Google Scholar 

  80. Calvert H, Bunn PA (2002) Future directions in the development of pemetrexed. Semin Oncol 29,suppl 5: 54–61

    CAS  PubMed  Google Scholar 

  81. Hanauske AR (2002) Pemetrexed: translational research in breast cancer. Semin Oncol 29,suppl 9: 40–42

    CAS  PubMed  Google Scholar 

  82. Anonymous (2000) Pemetrexed disodium (alimta). Drugs Fut 25: 527–534

    Google Scholar 

  83. Adjei AA (2004) Pemetrexed (alimta), a novel multitargeted antineoplastic agent. Clin Cancer Res 10: 4276s–4280s

    CAS  PubMed  Google Scholar 

  84. Adjei AA (2003) Pemetrexed (alimta): a novel multitargeted antifolate agent. Expert Rev Anticancer Ther 3: 145–156

    Article  CAS  PubMed  Google Scholar 

  85. Manegold C (2003) Pemetrexed (alimta, MTA, multitargeted antifolate, LY231514) for malignant pleural mesothelioma. Semin Oncol 30,suppl 10: 32–36

    CAS  PubMed  Google Scholar 

  86. Manegold C, Aisner J (2002) Pemetrexed for diffuse malignant pleural mesothelioma. Semin Oncol 20,suppl 5: 30–35

    Google Scholar 

  87. Shepherd FA (2002) Pemetrexed in the treatment of non-small cell lung cancer. Semin Oncol 29,suppl 18: 43–48

    PubMed  Google Scholar 

  88. O’Shaughnessy JA (2002) Pemetrexed: an acive new agent for breast cancer. Semin Oncol 29,suppl 18: 57–62

    Google Scholar 

  89. Chen VJ, Bewley JR, Andis SL, Schultz RM, Iversen PW, Shih C, Mendelsohn LG, Seitz DE, Tonkinson JL (1999) Cellular pharmacology of MTA: a correlation of MTA-induced cellular toxicity and in vitro enzyme inhibition with its effects on intracellular folate and nucleoside triphosphate pools in CCRF-CEM cells. Semin Oncol 26,Suppl 6: 48–54

    CAS  PubMed  Google Scholar 

  90. Niyikiza C, Baker SD, Seitz DE, Walling JM, Nelson K, Rusthoven JJ, Stabler SP, Paoleti P, Calvert AH, Allen RH (2002) Homocysteine and methylmalonic acid: markers to predict and avoid toxicity from pemetrexed therapy. Mol Cancer Ther 1: 545–552

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag, Basel (Switzerland)

About this chapter

Cite this chapter

Schultz, R.M. (2005). Preclinical development of Alimta™ (Pemetrexed, LY231514), a multitargeted antifolate. In: Herrling, P.L., Matter, A., Schultz, R.M. (eds) Advances in Targeted Cancer Therapy. Progress in Drug Research, vol 63. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7414-4_11

Download citation

Publish with us

Policies and ethics