Skip to main content

Large-Scale-Structure Identification and Control in Turbulent Shear Flows

  • Chapter
  • First Online:
Flow Control

Part of the book series: Lecture Notes in Physics ((LNPMGR,volume 53))

Abstract

The control of turbulent shear flows can be achieved through the control of the large-scale structures. Indeed, even in fully turbulent shear flows, these large-scale structures are known to be of primary importance for most of the flow characteristics. Due to the turbulent character of flows under practical and industrial interests, the detection, analysis, prediction and control of the large-scale structures are quite complex. We present, in this chapter, several tools available for accessing these large-scale structures. Non conditional, stochastic methods, based on correlations, are preferentially detailed. In particular, the Proper Orthogonal Decomposition and the Linear Stochastic Estimation are described. As an illustration of the potentialities of these objective stochastic approaches, the particular case of the turbulent plane mixing layer is derived as a guide-line all along this chapter. In its last part this chapter will focus onto the way by which, using POD, low dimensional models of the structures can be derived, in the framework of a closed loop control of these structures. This approach, deeply related to the notion of deterministic chaos, is then emphasized. The important problem of the closure (mean flow/turbulent flow) appearing in this context is recalled. The last part of this chapter is devoted to a point that is specific and of importance for these stochastic approaches. The limits for the representation of the flow by these models when the flow configuration evolves have to be given. The methods able to take into account this evolution are of crucial importance and under rapid development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian R.J. (1975): On the role of Conditional Averages in Turbulence Theory. In Proc. 4th Biennal Symp. on Turbulence in Liquids.

    Google Scholar 

  • Adrian R.J. (1979): Conditional Eddies in Isotropic Turbulence. Phys. Fluids 22(11), 2065–2070.

    Article  MATH  ADS  Google Scholar 

  • Adrian R.J. (1996): Stochastic Estimation of the Structure of Turbulent Fields. In Eddy Structure Identification, ed. J. P. Bonnet, 145–195, Springer-Verlag, Berlin.

    Google Scholar 

  • Adrian R.J., Moin P. (1988): Stochastic Estimation of Organized Turbulent Structure: Homogeneous Shear Flow. J. Fluid Mech. 190, 531–559.

    Article  MATH  ADS  Google Scholar 

  • Ahmed N., Goldstein M.H. (1975): Orthogonal Transforms for Digital Signal Processing. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Antonia R.A. (1981): Conditional Sampling in Turbulence Measurement. Annu. Rev. of Fluid Mech. 13, 131–156.

    Article  ADS  Google Scholar 

  • Antonia R.A., Chambers A.J., Britz D., Browne L.W.B. (1986): Organized Structures in a Turbulent Plane Jet: Topology and Contribution to Momentum and Heat Transport. J. Fluid Mech. 172, 211–229.

    Article  MATH  ADS  Google Scholar 

  • Ash R.B., Gardner M.F. (1975): Topics in Stochastic Processes. Academic Press, New York.

    MATH  Google Scholar 

  • Aubry N., Berkooz G., Coller B., Elezgaray J., Hohnes P., Lumley J.L., Poje A. (1994): Low Dimensional Models, Wavelet Transforms and Control. In Eddy Structure Identification Techniques in Free Turbulent Shear Flows, ed. J. P. Bonnet, 271–331, Springer-Verlag, Berlin.

    Google Scholar 

  • Aubry N., Chauve M.P., Guyonnet R. (1994): Transition to Turbulence on a Rotating Flat Disk. Phys. Fluids 6(8), 2800–2814.

    Article  ADS  Google Scholar 

  • Aubry N., Guyonnet R., Lima R. (1991): Spatio-Temporal Analysis of Complex Signals: Theory and Applications. J. Statis. Phys. 64(3/4), 683–739.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Aubry N., Hohnes P., Lumley J.L., Stone E. (1988): The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer. J. Fluid Mech. 192, 115–173.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Aubry N., Lian W., Titi E. (1993): Preserving Symmetries in the Proper Orthogonal Decomposition. SIAM J. Sci. Comput. 14(2), 483–505.

    Article  MATH  MathSciNet  Google Scholar 

  • Aubry N., Lumley J.L. & Hohnes P. (1990): The Effect of Modeled Drag Reduction on the Wall Region. Theoretical Computational Fluid Dynamics 1, 229–248.

    Article  MATH  ADS  Google Scholar 

  • Bakewell P., Lumley J.L. (1967): Viscous Sublayer and Adjacent Wall Region in Turbulent Pipe Flow. Phys. Fluids 10(9), 1880–1889.

    Article  ADS  Google Scholar 

  • Bellin S. (1991): Etude Expérimentale des Structures Cohérentes d’une Couche de Mélange Plane Turbulente de Fluide Incompressible. Ph.D. Dissertation, Université de Poitiers, France.

    Google Scholar 

  • Bellin S., Delville J., Vincendeau E., Garem J.-H., Bonnet J.P. (1992): Large-Scale Structure Characterization in a 2D Mixing Layer by Pseudo-Flow-Visualization and Delocalized Conditional Sampling. In Eddy Structure Identification in Free Turbulent Shear Flows, eds. J. P. Bonnet and M. N. Glause, Kluwer Academic Press, Dordrecht, The Netherlands.

    Google Scholar 

  • Berkooz G. (1991): Turbulence, Coherent Structures, and Low Dimensional Models. Ph.D. Dissertation, Cornell University, Ithaca, New York.

    Google Scholar 

  • Berkooz G. (1992): Feedback Control by Boundary Deformation of Models of the Turbulent Wall Layer. Report, Cornell University.

    Google Scholar 

  • Berkooz G., Hohnes P., Lumley J.L. (1993): The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows. Annu. Rev. Fluid Mech. 25, 539–575.

    Article  ADS  Google Scholar 

  • Berkooz G., Hohnes P., Lumley J.L., Aubry N., Stone E. (1994): Observations Regarding “Coherence and Chaos in a Model of Turbulent Boundary Layer” by X. Zhou and L. Sirovich [Phys. Fluids A 4, 2855 (1992)]. Phys. Fluids 6(4), 1574–1578.

    Article  ADS  MathSciNet  Google Scholar 

  • Bernai L.P. (1981): The Coherent Structure of Turbulent Mixing Layers. Ph.D. Dissertation, California Institute of Technology, Pasadena.

    Google Scholar 

  • Bernai L.P., Roshko A. (1986): Streamwise Vortex Structure in Plane Mixing Layers. J. Fluid Mech. 170, 499–525.

    Article  ADS  Google Scholar 

  • Bisset D.K., Antonia R.A., Brown L.W.B. (1990): Spatial Organization of Large Structures in the Turbulent Far Wake of a Cylinder. J. Fluid Mech. 218, 439–461.

    Article  ADS  Google Scholar 

  • Blackwelder R.F., Kaplan R.E. (1976): On the Wall Structure of the Turbulent Boundary Layer. J. Fluid Mech. 76, 89–112.

    Article  ADS  Google Scholar 

  • Bloch A. M., Marsden J. E. (1989): Controlling Homoclinic Orbits. Theoret. Comput. Fluid Dynamics 1, 179–190.

    Article  MATH  ADS  Google Scholar 

  • Bonnet J.-P., Cole D.R., Delville J., Glauser M.N., Ukeiley L.S. (1994): Stochastic Estimation and Proper Orthogonal Decomposition: Complementary Techniques for Identifying Structure. Exp. in Fluids 17, 307–314.

    Article  ADS  Google Scholar 

  • Bonnet J.P., Delville J., Glauser M.N. (1993): Workshop on Eddy Structure Identification in Free Turbulent Shear Flows, ERCOFTAC Bulletin 17, 41–51.

    Google Scholar 

  • Bonnet J.-P., Lewalle J., Glauser M.N. (1996): Coherent Structures: Past, Present and Future. In Advances in Turbulence VI, 83–90, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Boussinesq J. (1877): Essai sur la Théorie des Eaux Courantes. Mémoire Prśenté par Divers Savants á l’Académie des Sciences, Paris 23(1), 1–680.

    Google Scholar 

  • Brereton G.J., Kodal A. (1994): An Adaptative Turbulence Filter for Decomposition of Organized Turbulent Flows. Phys. Fluids 6(5), 1775–1786.

    Article  MATH  ADS  Google Scholar 

  • Breuer K. S., Sirovich L. (1991): The Use of Karhunen-Loève Procedure for the Calculation of Linear Eigenfunctions. J. Comput. Phys. 96, 277–296.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Browand F.K., Ho C.M. (1983): The Mixing Layer: an Exemple of Quasi Two-Dimensional Turbulence. J. de Mécanique Théorique et Appliquée, Special Issue, 99–120.

    Google Scholar 

  • Browand F.K., Troutt T.R. (1980): A Note on Spanwise Structure in the Two-Dimensional Mixing Layer. J. Fluid Mech. 97, 771–781.

    Article  ADS  Google Scholar 

  • Browand F.K., Weidman P.D. (1976): Large Scales in the Developing Mixing Layers. J. Fluid Mech. 76, 127–144.

    Article  ADS  Google Scholar 

  • Brown G.L., Roshko A (1974): On Density Effects and Large Scale Structure in Turbulent Mixing Layers. J. Fluid Mech. 64, 775–816.

    Article  ADS  Google Scholar 

  • Cao N.Z. (1993): Analysis and Reduced Simulations of Laminar/Turbulent Wake Plows. Ph.D. Dissertation, City University of New York.

    Google Scholar 

  • Carlson H.A., Lumley J.L. (1996): Active Control in the Turbulent Wall Layer of a Minimal Flow Unit. J. Fluid Mech. 329, 341–371.

    Article  MATH  ADS  Google Scholar 

  • Carrion S. (1993): Reliability of Bi-Orthogonal Decomposition Applied to a Rotating Disk Boundary Layer. Exp. in Fluids 14, 59–64.

    ADS  Google Scholar 

  • Chambers D.H., Adrian R.J., Moin P., Stewart D.S., Sung H.J. (1988): Karhunen-Loève Expansions of Burger’s Model of Turbulence. Phys. Fluids. 31(9), 2573–2582.

    Article  ADS  Google Scholar 

  • Christensen E.A., Sørensen J.N., Brøns M., Christiansen P.L. (1993): Low-Dimensional Representations of Early Transition in Rotating Fluid Flow. Theoret. Comput. Fluid. Dynamics 5, 259–267.

    Article  MATH  ADS  Google Scholar 

  • Cimbala J.M., Nagib H.M., Roshko A. (1988): Large Structure in the Far Wakes of Two-Dimensional Bluff Bodies. J. Fluid Mech. 190, 265–298.

    Article  ADS  Google Scholar 

  • Citriniti J.H. (1996): Experimental Investigation into the Dynamics of the Axisymmetric Mixing Layer Utilizing the Proper Orthogonal Decomposition. Ph.D. Dissertation, State University of New York at Buffalo.

    Google Scholar 

  • Citriniti J.H., George W.K. (1997): The Reduction of Spatial Aliasing by Long Hot-Wire Anemometer Probes. Accepted for publication in Exp. in Fluids.

    Google Scholar 

  • Cole D.R., Glauser M.N., Guezennec Y.G. (1992): An Application of the Stochastic Estimation to the Jet Mixing Layer. Phys. Fluids 4(1), 192–194.

    Article  ADS  Google Scholar 

  • Coller B.D., Hohnes P., Lumley J.L. (1994a): Interaction of Adjacent Bursts in the Wall Region. Phys. Fluids 6(2), part 2, 954–961.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Coller B.D., Hohnes P., Lumley J.L. (1994b): Control of Bursting in Boundary Layer Models. Appl. Mech. Rev. 47(6), part 2, S139–S143.

    Article  Google Scholar 

  • Cordier L. (1996): Etude de Systémes Dynamiques basés sur la Décomposition Orthogonale aux Valeurs Propres (POD). Application à la couche de mélange turbulente et à l’écoulement entre deux disques contra-rotatife. Ph.D. Dissertation, Université de Poitiers, France.

    Google Scholar 

  • Cordier L., Manceau R., Delville J., Bonnet J.P. (1997): Sur la Relation Entre la Théorie de la Stabilité Linéaire et la Décomposition Orthogonale aux Valeurs Propres: le Cas de la Couche de Mélange Plane Turbulente. Accepted for publication in Comptes Rendus de l’Académie des Sciences Paris.

    Google Scholar 

  • Cordier L., Delville J., Tenaud C. (1997): Low Dimensional Description of Large Scale Structures Dynamics in a Plane Turbulent Mixing Layer. Turbulent Shear Flows 11th, September 8–11, Grenoble, France.

    Google Scholar 

  • Corke T.C., Glauser M.N., Berkooz G. (1994): Utilizing Low-Dimensional Dynamical Systems Models to Guide Control Experiments. Appl. Mech. Rev. 47(6), part 2, S132–S138.

    Google Scholar 

  • Corke T.C., Kusek S.M. (1993): Resonance in Axisymetric Jets with Controlled Helical Mode Input. J. Fluid Mech. 249, 307–336.

    Article  ADS  Google Scholar 

  • Courant R., Hilbert D. (1953): Methods of Mathematical Physics. Interscience Publishers, New York.

    Google Scholar 

  • Daube O., S0rensen J.N. (1989): Simulation Numérique de l’Écoulement Périodique Axisymétrique dans une Cavité Cylindrique. C. R. Acad. Sci. Paris Série 2 308, 463–469.

    MATH  Google Scholar 

  • Deane A.E., Kevrekidis LG., Karniadakis G.E., Orszag S.A. (1991): Low Dimensional Models for Complex Geometry Flows: Application to Grooved Channels and Circular Cylinders. Phys. Fluids 3(10), 2337–2354.

    Article  MATH  ADS  Google Scholar 

  • Deane A.E., Mavriplis C. (1994): Low-Dimensional Description of the Dynamics in Separated Flow Past Thick Airfoils. AIAA J. 32(6), 1222–1227.

    ADS  Google Scholar 

  • Deane A.E., Sirovich L. (1991): A Computational Study of Rayleigh-Bénard Convection. Part 1. Rayleigh-Number Scaling. J. Fluid Mech. 222, 231–250.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Delville J. (1994): Characterization of the Organization in Shear Layers via the Proper Orthogonal Decomposition. Applied Scientific Research 53, 263–281

    Article  ADS  Google Scholar 

  • Delville J. (1995): La Décomposition Orthogonale et l’Analyse de l’Organisation Tri-Dimensionnelle d’Écoulements Turbulents Cisaillés Libres. Ph.D. Dissertation, Université de Poitiers, France.

    Google Scholar 

  • Delville J., Bellin S., Bonnet J.P. (1990): Use of the Proper Orthogonal Decomposition in a Plane Turbulent Miximg Layer. In Turbulence and Coherent Structures, eds. O. Métais, M. Lesieur, 75–90. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Delville J., Bellin S., Garem J.H., Bonnet J.P. (1988): Analysis of Structures in a Turbulent Plane Mixing Layer by Use of a Pseudo Flow Visualization Method Based Hot-Wire Anemometry. In Advances in Turbulence II, eds. H. H. Fernholtz, H.E. Fielder, p. 251. Springer-Verlag, Berlin.

    Google Scholar 

  • Delville J., Ukeiley L. (1993): Vectorial Proper Orthogonal Decomposition, Including Spanwise Dependency, in a Plane Fully Turbulent Mixing Layer. In Ninth Symp. on Turbulent Shear Flows, Kyoto, Japan, August 16–18.

    Google Scholar 

  • Delville J., Vincendeau E., Ukeiley L., Garem J.H., Bonnet J.P. (1993): Etude Expérimentale de la Structure d’une Couche de Mélange Plane Turbulente en Fluide Incompressible. Application de la Décomposition Orthogonale aux Valeurs Propres. Convention DRET 90-171, rapport final.

    Google Scholar 

  • De Souza F., Delville J., Bonnet J.P. (1997): On the Large Scale Organization of a Turbulent Boundary Layer Disturbed by a Circular Cylinder. Turbulent Shear Flows 11th, September 8–11, Grenoble, France.

    Google Scholar 

  • Doedel E.J. (1981): AUTO: A program for the Automatic Bifurcation Analysis of Autonomous System. Congressus Numerantium 30, 265–284.

    MathSciNet  Google Scholar 

  • Faghani D. (1996): Etude des Structures Tourbillonnaires de la Zone Proche d’un Jet Plan: Approche Stationnaire Multidimensionnelle. Ph.D. Dissertation, INP Toulouse, France.

    Google Scholar 

  • Farge M. (1992): Wavelet Transforms and their Applications to Turbulence. Annu. Rev. Fluid Mech 24, 395–457.

    Article  ADS  MathSciNet  Google Scholar 

  • Favre A., Kovasznay L.S.G., Dumas R., Gaviglio J., Coantic M. (1976): La Turbulence en Mécanique des Fluides. Gauthier Villars.

    Google Scholar 

  • Ferré J.A., Girault F. (1989a): Pattern Recognition Analysis of the Velocity Field in Plane Turbulent Wakes. J. Fluid Mech. 198, 27–64.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Ferré J.A., Girault F. (1989b): Some Tological Features of the Entrainment Process in a Heated Turbulent Wake. J. Fluid Mech., 198, 65–78.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Fletcher C.A.J. (1984): Computational Galerkin Methods. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Frenkiel F.N., Klebanoff P.S. (1967): Higher-Order Correlations in a Turbulent Field. Phys. Fluids 10(3), 507–520.

    Article  ADS  Google Scholar 

  • Fukunaga K. (1972): Introduction to Statistical Pattern Recognition. Academic Press, New York.

    Google Scholar 

  • Glauser M.N. (1996): Private Communication.

    Google Scholar 

  • Glauser M.N., Cole D., Ukeiley L.S., Bonnet J.-R, Delville J. (1993): Stochastic Estimation and Proper Orthogonal Decomposition: Complementary Techniques for Identifying Structure. Proc. Turbulent Shear Flow 9, Kyoto, Japan, August 1993.

    Google Scholar 

  • Glauser M.N., George W.K. (1987a): Orthogonal Decomposition of the Axisymetric Jet Mixing Layer Including Azimuthal Dependence. In Advances in turbulence, eds. G. Comte-Bellot, J. Mathieu, 357–366. Springer-Verlag, Berlin.

    Google Scholar 

  • Glauser M.N., George W.K. (1987b): Orthogonal Decomposition of the Axisymetric Jet Mixing Layer Utilizing Cross-Wire Velocity Measurements. In Sixth Symp. Turbulent Shear Flows.

    Google Scholar 

  • Glauser M.N., George W.K. (1992): Application of Multi-Point Measurements for Flow Characterization. Experimental Thermal & Fluid Sciences 5, 617–632.

    Article  ADS  Google Scholar 

  • Glauser M.N., Leib S., George W.K. (1985): Coherent Structures in the Axisymetric Turbulent Jet Mixing Layer. In Fifth Symp. Turb. Shear Flows.

    Google Scholar 

  • Glauser M.N., Leib S., George W.K. (1987): Coherent Structures in the Axisymetric Turbulent Jet Mixing layer. In Fifth Turbulent Shear Flows, eds. F. Durst, B. E. Launder, J. L. Lumley, F. W. Schmidt, J. H. Whitelaw. Springer-Verlag, Berlin.

    Google Scholar 

  • Glezer A., Kadioglu A.J., Pearlstein A.J. (1989): Development of an Extended Proper Orthogonal Decomposition and its Application to a Time Periodically Forced Plane Mixing Layer. Physics of Fluids 1(8), 1363–1373.

    Article  ADS  MathSciNet  Google Scholar 

  • Grant H.L. (1958): The Large Eddies of Turbulent Motion. J. Fluid Mech. 4, 149–190.

    Article  ADS  Google Scholar 

  • Guckenheimer J. (1976): A Strange Strange Attractor. In The Hopf Bifurcation and its Applications, eds. J. E. Marsden, M. McCracken, 368–381. Springer-Verlag, Berlin.

    Google Scholar 

  • Guezennec Y.G. (1989): Stochastic Estimation of Coherent Structures in Turbulent Boundary Layers. Phys. Fluids 1(6), 1054–1060.

    Article  ADS  MathSciNet  Google Scholar 

  • Guezennec Y., Gieseke T.J. (1991): Multi-Point Stochastic Estimation of the Spatio-Temporal Evolution of the Far Wake of a Circular Cylinder. Bul. Am. Phys. Soc. 36(10), 2863.

    Google Scholar 

  • Handler R.A., Levich E., Sirovich L. (1993): Drag Reduction in Turbulent Channel Flow by Phase Randomization. Phys. Fluids 5(3), 686–694.

    Article  MATH  ADS  Google Scholar 

  • Hayakawa M., Hussain A.K.M.F. (1989): Three-Dimensionality of Organized Structures in a a Plane Turbulent Wake. J. Fluid Mech. 206, 375–404.

    Article  ADS  Google Scholar 

  • Herzog S. (1986): The Large Scale Structure in the Near-Wall of Turbulent Pipe Flow. Ph.D. Dissertation, Cornell University, Ithaca, New York.

    Google Scholar 

  • Ho C.-M., Tung S., Tai Y.-C. (1996): Interactive Control of Wall Structures by MEMS-Based Transducers. In Advances in Turbulence VI, 413–416, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Hohnes P., Lumley J.L., Berkooz G. (1996): Turbulence, Coherent Structures, Dynamical Systems, and Symmetry. Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  • Hopf E. (1948): A Mathematical Example Displaying the Features of Turbulence. Comm. Pure Appl. Math. 1, 303–322.

    Article  MathSciNet  Google Scholar 

  • Huang H. (1994): Limitations and Improvements to PIV and its Application to a Backward-Facing Step Flow. Ph.D. Dissertation, TU Berlin, Germany.

    Google Scholar 

  • Hunt J.C.R., Abell C.J., Peterka J.A., Woo H. (1978): Kinematical Studies of the Flows Around Free or Surface-Mounted Obstacles; Applying Topology to Flow Visualization. J. Fluid Mech. 86, 179–200.

    Article  ADS  Google Scholar 

  • Hussain A.K.M.F. (1986): Role of Coherent Structures and Turbulenc e.J. FluidMech. In Surveys in Fluid Mechanics, eds. Narasimha and Deshpande.

    Google Scholar 

  • Hussain A.K.M.F. (1983): Coherent Structures—Reality and Myth. Phys. Fluids 26(10), 2816–2850.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Hussain A.K.M.F. (1986): Coherent Structures and Turbulence. J. Fluid Mech. 173, 303–356.

    Article  ADS  Google Scholar 

  • Joia A., Ushijima T., Perkins R.J. (1997): Numerical Study of Bubble Motion in a Turbulent Boundary Layer Using Proper Orthogonal Decomposition. ASME Fluids Engineering Division Summer Meeting.

    Google Scholar 

  • Kim J., Moin P., Moser R.D. (1987): Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number. J. Fluid Mech. 177, 133–166.

    Article  MATH  ADS  Google Scholar 

  • Kolmogorov A.N. (1941): The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers. Dokl. Aked. Nauk. USSR 30, 299–303.

    ADS  Google Scholar 

  • Koochesfahani M.N., Catherasoo C.J., Dimotakis P.E., Gharib M., Lang D.B. (1979): Two-Point LDV Measurements in a Plane Mixing Layer. AIAA J. 17(12), 1347–1351.

    ADS  Google Scholar 

  • Landa P.S., Rosenblum M.G. (1991): Time Series Analysis for System Identification and Diagnostics. Physica D 48 232–254

    Article  MATH  ADS  Google Scholar 

  • Landau L.D. (1944): On the Problem of Turbulence. Dokl. Aked. Nauk. USSR 44, 311.

    Google Scholar 

  • Le Gal P., Peschard I., Chauve M. P., Takeda Y. (1996): Collective Behavior of Wakes Downstream a Row of Cylinders. Phys. Fluids 8(8), 2097–2106.

    Article  ADS  Google Scholar 

  • Lehmann B., Mante J. (1993): Analysis of Turbulent Structure by Mean of a Two-Component Laser-Doppler Scanning Technique. In Engineering Turbulence Modelling and Experiments 2, eds. W. Rodi, F. Martelli, 415–424. Elsevier, New York.

    Google Scholar 

  • Lesieur M. (1990): Turbulence in Fluids, second edition. Kluwer Academic publishers, Dordrecht, The Netherlands.

    MATH  Google Scholar 

  • Lesieur M. (1993): Turbulence and coherent vortices. In Computational Fluid Dynamics, eds. M. Lesieur, P. Comte, J. Zinn-Justin. Elsevier, New York.

    Google Scholar 

  • Levich E., Malomed B. (1993): Model of Boundary Layer Turbulence. Preprint.

    Google Scholar 

  • Liu Z.C., Adrian R.J., Hanratty T.J. (1994): Reynolds Number Similarity of Orthogonal Decomposition of the Outer Layer of Turbulent Wall Flow. Phys. Fluids 6(8), 2815–2819.

    Article  ADS  Google Scholar 

  • Loeve M. (1955): Probability Theory. Van Nostrand, New York.

    MATH  Google Scholar 

  • Long D.F., Arndt R.E.A., Glauser M.N. (1993): The Orthogonal Decomposition of Pressure Fluctuations Surrounding A Turbulent Jet. Submitted to J. Fluid Mech.

    Google Scholar 

  • Lorenz E.N. (1963): Deterministic Non-Periodic Flow. J. Atmos. Sciences 20, 130–141.

    Article  ADS  Google Scholar 

  • Lu L.J., Smith C.R. (1991): Velocity Profile Reconstruction Using Orthogonal Decomposition. Exp. in Fluids 11, 247–254.

    Article  ADS  Google Scholar 

  • Lumley J.L. (1967): The structure of Inhomogeneous Turbulent Plows. In Atmospheric Turbulence and Radio Wave Propagation, eds. A. M. Yaglom, V. I. Tatarski, 166–178. Nauka, Moscow.

    Google Scholar 

  • Lumley J.L. (1970): Stochastic Tools in Turbulence. Academic Press, New York.

    MATH  Google Scholar 

  • Lumley J.L. (1981): Coherent Structures in Turbulence. In Transition and Turbulence, ed. R. E. Meyer, 215–242. Academic Press, New York.

    Google Scholar 

  • Manhart M., Wengle H. (1993): A Spatiotemporal Decomposition of a Fully Inhomogeneous Turbulent Flow Field. Theoret Comput. Fluid Dynamics 5, 223–242.

    Article  MATH  ADS  Google Scholar 

  • Manneville P. (1991): Structures Dissipatives, Chaos et turbulence. Collection Aléa Saclay.

    Google Scholar 

  • Michalke A. (1964): On the Inviscid Instability of the Hyperbolic-Tangent Velocity Profile. J. Fluid Mech. 19, 543–556.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Moin P. (1984): Probing Turbulence via Large Eddy Simulation. AIAA 22nd Aerospace Sciences Meeting.

    Google Scholar 

  • Moin P., Moser R.D. (1989): Characteristic-Eddy Decomposition of Turbulence in a Channel. J. Fluid Mech. 200, 471–509.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Mumford J.C. (1982): The Structure of the Large Eddies in Fully Developed Turbulent Shear Flows. Part 1. The plane jet. J. Fluid Mech. 118, 241–268.

    Article  ADS  Google Scholar 

  • Obukhov A.M. (1941): Energy Distribution in the Spectrum of a Turbulent Flow. Izvestya Aked. Nauk. SSSR, Ser. Geogr. Geophys. 4-5, 453–466.

    Google Scholar 

  • Ott E.A., Grebogi C, Yorke J.A. (1990): Controlling Chaos. Phys. Rev. Lett. 64(11), 1196–1199.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Park H., Sirovich L. (1990): Turbulent Thermal Convection in a Finite Domain: Part 2. Numerical results. Phys. Fluids 2(9), 1659–1668.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Payne F.R. (1966): Large Eddy Structure of a Turbulent Wake. Ph.D. Dissertation, Pennsylvania State University, State College, Pennsylvania.

    Google Scholar 

  • Payne F.R., Lumley J.L. (1967): Large Eddy Structure of the Turbulent Wake behind a Circular Cylinder. Phys. Fluids 10, S194–S196.

    Article  ADS  Google Scholar 

  • Pécheux J., Vigor H. (1995): Instabilité de l’Eecoulement dans une Cavité Cylindrique à Parois Contra-Rotatives. 2 eme Congrès de Mécanique, Casablanca, Morocco.

    Google Scholar 

  • Poje A., Lumley J.L. (1995): A Model for Large Scale Structures in Turbulent Shear Flows. J. Fluid Mech. 285, 349–369.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Rajaee M., Karlsson S.K.F. (1990): Shear Flow Coherent Structures via Karhunen-Loève Expansion. Phys. Fluids 2(12), 2249–2251.

    Article  ADS  Google Scholar 

  • Rajaee M., Karlsson S.K.F., Sirovich L. (1994): Low-Dimensional Description of Free-Shear-Flow Coherent Structures and their Dynamical Behavior. J. Fluid Mech. 258, 1–29.

    Article  MATH  ADS  Google Scholar 

  • Rempfer D. (1991): Koherente Struturen und Chaos beim Laminar-Turbulenten Grenzschichtumschlag. Ph.D. Dissertation, Stuttgart University, Germany.

    Google Scholar 

  • Rempfer D. (1993): Low-Dimensional Models of a Flat-Plate Boundary Layer. In Near-Wall Turbulent Flows, eds. R. M. C. So, C. G. Speziale, B.E. Launder, 63–72. Elsevier Science Publishers, New York.

    Google Scholar 

  • Rempfer D. (1994): On the Structure of Dynamical Systems Describing the Evolution of Coherent Structures in a Convective Boundary Layer. Phys. Fluids 6(3), 1402–1404.

    Article  MATH  ADS  Google Scholar 

  • Renrpfer D. (1996): Investigations of Boundary Layer Transition via Galerkin Projections on Empirical Eigenfunctions. Phys. Fluids 8(1), 175–188.

    Article  ADS  Google Scholar 

  • Rempfer D., Easel H.F. (1991): Evolution of Coherent Structures during Transition in a Flat-Plate Boundary Layer. Proceedings of the Eight Symposium on Turbulent Shear Flows. Munich, Germany.

    Google Scholar 

  • Rempfer D., Fasel H.F. (1994a): Evolution of Three-Dimensional Coherent Structures in a Flat-Plate Boundary Layer. J. Fluid Mech. 260, 351–375.

    Article  ADS  Google Scholar 

  • Rempfer D., Fasel H.F. (1994b): Dynamics of Three-Dimensional Coherent Structures in a Flat-Plate Boundary Layer. J. Fluid Mech. 275, 257–283.

    Article  ADS  Google Scholar 

  • Rice S.O. (1954): Mathematical Analysis of Random Noise. Bell System Technical Journal, 282–332.

    Google Scholar 

  • Riesz F., Nagy B.S. (1955): Functionnal Analysis. Ungar, New York.

    Google Scholar 

  • Rist U., Fasel H.F. (1995): Direct Numerical Simulation of Controlled Transition in a Flat-Plate Boundary Layer. J. Fluid Mech. 298, 211–248.

    Article  MATH  ADS  Google Scholar 

  • Ruelle D., Takens F. (1971): On the Nature of Turbulence. Commun. Math. Phys. 20, 167.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Sanghi S. (1991): Mode Interaction Models in Near-Wall Turbulence. Ph.D. Dissertation, Cornell University, Ithaca, New York.

    Google Scholar 

  • Schoppa W., Hussain F. (1994): New Aspects of Vortex Dynamics Relevant to Coherent Structures in Turbulent Flows. In Eddy Structure Identification Techniques in Free Turbulent Shear Flows, ed. J. P. Bonnet, 61–143. Springer-Verlag, Berlin.

    Google Scholar 

  • Shinbrot T., Grebogi C, Ott E., Yorke J.A. (1992a): Using Chaos to Target Stationary States of Flow, it Phys. Rev. A 169, 349–354.

    MathSciNet  Google Scholar 

  • Shinbrot T., Ditto W., Grebogi C., Ott E., Spano M., Yorke J.A. (1992b): Using the Sensitive Dependance of Chaos (the “Butterfly Effect” ) to Direct Trajectories in an Experimental Chaotic System. Phys. Rev. Letters 68(19), 2863–2866.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Shinbrot T., Grebogi C, Ott E., Yorke J.A. (1993): Using Small Perturbations to Control Chaos. Nature 363, 411–417.

    Article  ADS  Google Scholar 

  • Sirovich L. (1987a): Turbulence and the Dynamics of Coherent Structures. Part 1: Coherent Structures. Quarterly of Applied Mathematics XLV(3), 561–571.

    ADS  MathSciNet  Google Scholar 

  • Sirovich L. (1987b): Turbulence and the Dynamics of Coherent Structures. Part 2: Symmetries and Transformations. Quarterly of Applied Mathematics XLV(3), 573–582.

    MathSciNet  Google Scholar 

  • Sirovich L. (1987c): Turbulence and the Dynamics of Coherent Structures. Part 3: Dynamics and Scaling. Quarterly of Applied Mathematics XLV(3), 583–590.

    MathSciNet  Google Scholar 

  • Sirovich L. (1989): Chaotic Dynamics of Coherent Structures. Physica D 37, 126–145.

    Article  ADS  MathSciNet  Google Scholar 

  • Sirovich L., Ball K.S., Handler R.A. (1991): Propagating Structures in Wall-Bounded Turbulent Flows. Theoret. Comput. Fluid. Dyn. 2, 307–317.

    Article  ADS  MATH  Google Scholar 

  • Sirovich L., Kirby M., Winter M. (1990): An Eigenfunction Approach to Large Scale Transitionnal Structures in Jet Flow. Phys. Fluids 2(2), 127–136.

    Article  ADS  Google Scholar 

  • Sirovich L., Park H. (1990): Turbulent Thermal Convection in a Finite Domain. Part 1: Theory. Phys. Fluids 2(9), 1649–1658.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Sirovich L., Rodriguez J. (1987): Coherent Structures and Chaos: a Model Problem. Phys. Letters A 120(5), 211–214.

    Article  ADS  MathSciNet  Google Scholar 

  • Sirovich L., Zhou X. (1994): Reply to “Observations Regarding Coherence and Chaos in a Model of Turbulent Boundary Layer” by X. Zhou and L. Sirovich [Phys. Fluids A 4, 2855 (1992)]. Phys. Fluids 6(4), 1579–1582.

    Article  ADS  MathSciNet  Google Scholar 

  • Sørensen J.N., Christensen E.A. (1995): Direct Numerical Simulation of Rotating Fluid Flow in a Closed Cylinder. Phys. Fluids 7(4), 764–778.

    Article  MATH  ADS  Google Scholar 

  • Sparrow C. T. (1982): The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Swinney H.L. (1983): Observations of Order and Chaos in Nonlinear Systems. Physica D 7, 3–15.

    Article  ADS  MathSciNet  Google Scholar 

  • Temam R. (1988): Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Tennekes H., Lumley J. L. (1972): A First Course in Turbulence. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Townsend A.A. (1976): The Structure of Turbulent Shear Flow, second edition. Cambridge University Press, Cambridge, United Kingdom.

    MATH  Google Scholar 

  • Tung T.C., Adrian R.J. (1980): Higher-Order Estimates of Conditional Eddies in Isotropic Turbulence. Phys. Fluids 23(7), 1469–1470.

    Article  ADS  Google Scholar 

  • Ukeiley L.S. (1995): Dynamics of Large Scale Structures ha a Plane Turbulent Mixing Layer. Ph.D. Dissertation, Clarkson University, Potsdam, New York.

    Google Scholar 

  • Ukeiley L.S., Cole D.R., Glauser M.N. (1993): An Examination of the Axisymmetric Jet mixing Layer Using Coherent Structure Detection Techniques. In Eddy Structure Identification in Free Turbulent Shear Flows, eds. J. P. Bonnet, M. N. Glauser. Kluwer Academic publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Vincendeau E. (1995): Analyse Conditionnelle et Estimation Stochastique Appliquées à l’Etude des Structures Cohérentes dans la Couche de Mélange. Ph.D. Dissertation, Université de Poitiers, France.

    Google Scholar 

  • Wallace J.M., Brodkey R.S., Eckelmann H. (1977): Pattern-Recognized Structures in Bounded Turbulent Shear Flows. J. Fluid Mech. 83, 673–693.

    Article  ADS  Google Scholar 

  • Zheng X. (1991): A Low Dimensional Dynamical Systems Description of Coherent Structures in the Axisymmetric Jet Mixing Layer. Ph.D. Dissertation, Clarkson University, Potsdam, New York.

    Google Scholar 

  • Zhou X., Sirovich L. (1992): Coherence and Chaos in a Model of Turbulent Boundary Layer. Phys. Fluids 4(12), 2855–2874.

    Article  MATH  ADS  MathSciNet  Google Scholar 

Books/Workshop

  • Le Chaos, Théorie et Expériences. Eyrolles Série Synthèse—Collection du Commissariat à l’Energie Atomique, 1988.

    Google Scholar 

  • Turbulence and Coherent Structures, selected papers from “Turbulence 89: Organized Structures and Turbulence in Fluid Mechanics,” Grenoble, eds. O. Metais, M. Lesieur. Kluwer Academic Publishers, Dordrecht, The Netherlands, September 1989.

    Google Scholar 

  • Topological Fluid Dynamics, eds. H. K. Moffatt, A. Tsinober, 1989.

    Google Scholar 

  • Wither Turbulence? Turbulence at the Crossroads, ed. J. L. Lumley. Springer-Verlag, Berlin, 1990.

    Google Scholar 

  • Structure of Turbulence and Drag Reduction, ed. A. Gyr. Springer-Verlag, Berlin, 1990.

    Google Scholar 

  • Boundary Layer Structure Workshop, Langley Research Center, Hampton, VA, August 1990.

    Google Scholar 

  • Computational Fluid Dynamics, Les Houch.es, Session LIX, eds. M. Lesieur, P. Comte, J. Zinn-Justin. Elsevier Sciences Publishers, New York, 1993.

    Google Scholar 

  • Eddy Structure Identification in Free Turbulent Shear Flows, eds. J. P. Bonnet, M. N. Glauser. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993.

    Google Scholar 

  • Special Issue of Theoretical and Computational Fluid Dynamics5, 1993.

    Google Scholar 

  • Eddy Structure Identification Techniques in Free Turbulent Shear Flows, CISM/ERCOFTAC Advanced Course, Udine, Italy, R. Adrian, J. P. Bonnet, J. Delville, F. Hussain, J. Lumley, O. Metais, C. Vassilicos. Springer-Verlag, Berlin, 23–27 June 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Delville, J., Cordier, L., Bonnet, JP. (1998). Large-Scale-Structure Identification and Control in Turbulent Shear Flows. In: Gad-el-Hak, M., Pollard, A. (eds) Flow Control. Lecture Notes in Physics, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69672-5_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-69672-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63936-7

  • Online ISBN: 978-3-540-69672-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics