Skip to main content

Molecular and cellular phenotypes and their regulation in smooth muscle

  • Chapter
  • First Online:
Reviews of Physiology Biochemistry and Pharmacology, Volume 134

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 134))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwartz SM, Heimark RL, Majesky MW (1990) Developmental mechanisms underlying pathology of arteries. Physiol Rev 70: 1177–1209

    Google Scholar 

  2. Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517

    Google Scholar 

  3. Swynghedauw B (1986) Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscle. Physiol Rev 66:710–770

    PubMed  Google Scholar 

  4. Boheler KR, Schwartz K (1992) Gene expression in cardiac hypertrophy. Trends Cardiovasc Med 2:176–182

    Google Scholar 

  5. Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76:371–423

    PubMed  Google Scholar 

  6. Pette D, Staron RS (1997) Mammalian skeletal muscle fiber type transitions. Intn Rev Cytol 170:143–223.

    Google Scholar 

  7. Schwartz SM, DeBlois D, O'Brien ERM (1995) The intima. Soil for atherosclerosis and restenosis. Circ Res 77:445–465

    Google Scholar 

  8. Moss NS, Benditt EP (1970) Spontaneous and experimentally induced arterial lesions.I. An ultrastructural survey of the normal chicken aorta. Lab Invest 22:166–183

    Google Scholar 

  9. Lauper NT, Unni KK, Kotke BA, Titus JL (1975) Anatomy and histology of aorta of White Carneau pigeon. Lab Invest 32:536–551

    Google Scholar 

  10. Zanellato AMC, Borrione AC, Giuriato L, Tonello M, Scannapieco G, Pauletto P, Sartore S (1990) Myosin isoforms and cell heterogeneity in vascular smooth muscle. I. Developing and adult bovine aorta. Dev Biol 141:431–446.

    Google Scholar 

  11. Zanellato AMC, Borrione AC, Tonello M, Scannapieco G, Pauletto P, Sartore S (1990) Myosin isoform expression and smooth muscle cell heterogeneity in normal and atherosclerotic rabbit aorta. Arteriosclerosis 10:996–1009.

    Google Scholar 

  12. Frid MG, Moiseeva EP, Stenmark KR (1994) Multiple phenotypically distinct smooth muscle cell populations exist in the adult and developing bovine pulmonary arterial media in vivo. Circ Res 75:669–681

    Google Scholar 

  13. Frid MG, Dempsey EC, Durmowicz AG, Stenmark KR (1997) Smooth muscle cell heterogeneity in pulmonary and systemic vessels. Importance in vascular disease. Arterioscler Thromb Vasc Biol 17:1203–1209

    Google Scholar 

  14. de Boer WI, Schuller AGP, Vermey M, van der Kwast TH (1994) Expression of growth factors and receptors during specific phases in regenerating urothelium after acute injury in vivo. Am J Pathol 145:1199–1207

    Google Scholar 

  15. Faggian L, Pampinella F, Roelofs M, Paulon T, Franch R, Chiavegato A, Sartore S (1997) Phenotypic changes in the regenerating rabbit bladder muscle. Role of interstitial cells and innervation on smooth muscle cell differentiation. Histochem Cell Biol

    Google Scholar 

  16. Cunha GR, Battle E, Young P, Brody J, Donjacour A, Hayashi H (1992) Role of epithelial-mesenchymal interactions in the differentiation and spatial organization of visceral smooth muscle. Epithelial Cell Biol 1:76–83

    Google Scholar 

  17. Noguchi S, Yura Y, Sherwood ER, Kakinuma H, Kashihara N, Oyasu R (1990) Stimulation of stromal cell growth by normal rat urothelial cell-derived epidermal growth factor. Lab Invest 62:538–544

    Google Scholar 

  18. Campbell DJ, Habener JF (1986) Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. J Clin Invest 78:31–39

    Google Scholar 

  19. Gabella G, Uvelius B (1990) Urinary bladder of rat: fine structure of normal and hypertrophic musculature. Cell Tissue Res 262:67–79

    Google Scholar 

  20. Somlyo AP, Somlyo AV (1968) Vascular smooth muscle: I. Normal structure, pathology, biochemistry and biophysics. Pharmacol Rev 20:197–272.

    Google Scholar 

  21. Levy BJ, Wight TN (1995) The role of proteoglycans in bladder structure and function. Adv Exp Med Biol 385:191–203

    Google Scholar 

  22. Mironov AA, Rekhter MD, Kolpakov VA, Andreeva ER, Polishchuk RS, Bannykh SI, Filippov SV, Peretjatko LP, Kulida LV, Orekhov AN (1995) Heterogeneity of smooth muscle cells in embryonic human aorta. Tissue & Cell 27:31–38

    Google Scholar 

  23. Davis EC (1993) Smooth muscle cell to elastic lamina connections in developing mouse aorta. Role in aortic medial organization. Lab Invest 68:89–99

    Google Scholar 

  24. Sosa-Melgarejo JA, Berry CL (1995) Myoendothelial contacts in the human fetal aorta. Arch Med Res 26:431–435

    Google Scholar 

  25. Cliff WJ (1967) The aortic tunica media in growing rats studied with the electron microscope. Lab Invest 17:599–615

    Google Scholar 

  26. Gerrity RD, Cliff WJ (1975) The aortic tunica media of the developing rat. Lab Invest 32:585–600

    Google Scholar 

  27. Belknap JK, Grieshaber NA, Schwartz PE, Orton EC, Reidy MA, Majack RA (1996) Tropoelastin gene expression in individual vascular smooth muscle cells. Circ Res 78:388–394

    Google Scholar 

  28. Bendeck MP, Langille BL (1991) Rapid accumulation of elastin and collagen in the aortas of sheep in the immediate perinatal period. Circ Res 69:1165–1169

    Google Scholar 

  29. Stenmark KR, Mecham RP (1997) Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu Rev Physiol 59:89–144

    Google Scholar 

  30. Olivetti G, Anversa P, Melissari M, Loud AV (1980) Morphometric study of early postnatal development of thoracic aorta in the rat. Circ Res 47:417–424

    Google Scholar 

  31. Boudreau N, Turley E, Rabinovitch M (1991) Fibronection, hyaluronan, and hyluronan binding protein contribute to increased ductus arteriosus smooth muscle cell migration. Dev Biol 143:235–247

    Google Scholar 

  32. Slomp J, Van Munsteren JC, Poelmann RE, DeReeder EG, Bogers AJJC, Gittenberger-de Groot A (1992) Formation of intimal cushions in the ductus arteriosus as a model for vascular intimal thickening: an immunohistochemical study of changes in the extracellular matrix components. Atherosclerosis 93:25–39

    Google Scholar 

  33. Giuriato L, Scatena M, Chiavegato A, Guidolin D, Pauletto P, Sartore S (1993) Rabbit ductus arteriosus during development: anatomical structure and smooth muscle cell composition. Anat Rec 235:95–110

    Google Scholar 

  34. Manasek FJ (1971) The ultrastructure of embryonic myocardial blood vessels. Dev Biol 26:42–54

    Google Scholar 

  35. Sexton AJ, Turmaine M, Cai WQ, Burnstock G (1996) A study of the ultrastructure of developing human umbilical vessels. J Anat 188:75–85

    Google Scholar 

  36. Ward SM, Torihashi S (1995) Morphological changes during ontogeny of the canine proximal colon. Cell Tissue Res 282:93–108

    Google Scholar 

  37. Gabella G (1989) Development of smooth muscle: ultrastructural study of the chick embryo gizzard. Anat Embryol 180:213–226

    Google Scholar 

  38. Chou R-GR, Stromer MH, Robson RM, Huiatt TW (1992) Assembly of contractile and cytoskeletal elements in developing smooth muscle cells. Dev Biol 149:339–348

    Google Scholar 

  39. Carey DJ (1991) Control of growth and differentiation of vascular cells by extracellular matrix proteins. Ann Rev Physiol 53:161–177

    Google Scholar 

  40. Chamley-Campbell JH, Campbell GR, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59:1–61

    PubMed  Google Scholar 

  41. Thyberg J (1996) Differentiation properties and proliferation of arterial smooth muscle cells in culture. Intn Rev Cytol 169:183–265

    Google Scholar 

  42. Sartore S, Scatena M, Chiavegato A, Faggin E, Giuriato L, Pauletto P (1994) Myosin isoform expression in smooth muscle cells during physiological and pathological vascular remodeling. J Vasc Res 31:61–81

    Google Scholar 

  43. Horowitz A, Menice CB, Laporte R, Morgan KG (1996) Mechanisms of smooth muscle contraction. Physiol Rev 76:967–996

    Google Scholar 

  44. Somlyo AP (1993) Myosin isoforms in smooth muscle: how may they affect function and structure? J Muscle Res Cell Motil 14:557–563

    Google Scholar 

  45. Kelley CA, Adelstein RS (1994) Characterization of isoform diversity in smooth muscle myosin heavy chains. Can J Physiol Pharmacol 72:1351–1360

    Google Scholar 

  46. Miano JM, Cserjesi P, Ligon KL, Periasamy M, Olson EN (1994) Smooth muscle myosin heavy chain exclusively marks the smooth muscle lineage during mouse embryogenesis. Circ Res 75:803–812

    Google Scholar 

  47. Babij P, Periasamy M (1989) Myosin heavy chain isoform diversity in smooth muscle is produced by differential RNA processing. J Mol Biol 210:673–679

    Google Scholar 

  48. Nagai R, Kuro-o M, Babij P, Periasamy M (1989) Identification of two types of smooth muscle myosin heavy chain isoforms by cDNA cloning and immunoblot analysis. J Biol Chem 264:9734–9737

    Google Scholar 

  49. Hamada Y, Yanagisawa M, Katsuragawa Y, Coleman JR, Nagata S, Matsuda G, Masaki T (1990) Distinct vascular and intestinal smooth muscle myosin heavy chain mRNAs are encoded by a single-copy gene in the chicken. Biochem Biophys Res Commun 170:53–58

    Google Scholar 

  50. Babij P (1993) Tissue specific and developmentally regulated alternative splicing of a visceral isoform of smooth muscle myosin heavy chain. Nucleic Acids Res 21:1467–1471

    Google Scholar 

  51. Kelley CA, Takahashi M, Yu JH, Adesltein RS (1993) An insert of seven aminoacids confers functional differences between smooth muscle myosin from the intestines and vasculature. J Biol Chem 268:12848–12854

    Google Scholar 

  52. White S, Martin AF, Periasamy M (1993) Identification of a novel smooth muscle myosin heavy chain cDNA: Isoform diversity in the S1 head region. Am J Physiol 264 (Cell Physiol 33):C1252–C1258

    Google Scholar 

  53. Matsuoka R, Yoshida MC, Furutani Y, Imamura S-i, Kanda N, Yanagisawa M, Masaki T, Takao A (1993) Human smooth muscle myosin heavy chain gene mapped to chromosomal region 16q12. Am J Med Gen 46:61–67

    Google Scholar 

  54. Deng Z, Liu P, Marlton P, Claxton DF, Lane S, Callen DF, Collins FS, Siciliano MJ (1993) Smooth muscle myosin heavy chain locus (MYH11) maps to 16p13.13–p13.12 and establishes a new region of conserved synteny between human 16p and mouse 16. Genomics 18:156–159

    Google Scholar 

  55. Kuro-o M, Nagai R, Tsuchimochi H, Katoh H, Yazaki Y, Ohkubo A, Takaku F (1989) Developmentally regulated expression of vascular smooth muscle myosin heavy chain isoforms. J Biol Chem 264:18272–18275

    Google Scholar 

  56. Kuro-o M, Nagai R, Nakahara K, Katoh H, Tsai RC, Tsuchimochi H, Yazaki YH, Ohkubo H, Takaku F (1991) cDNA cloning of a myosin heavy chain isoform in embryonic smooth muscle and its expression during vascular development and in arteriosclerosis. J Biol Chem 266:3768–3773

    Google Scholar 

  57. Frid MG, Printseva OY, Chiavegato A, Faggin E, Koteliansky VE, Pauletto P, Glukhova MA, Sartore S (1993) Myosin heavy-chain composition in developing and adult human aortic smooth muscle. J Vasc Res 30:279–292

    Google Scholar 

  58. Eddinger TJ, Wolf JA (1993) Expression of four myosin heavy chain isoforms with development in mouse uterus. Cell Motil Cytoskel 25:358–368

    Google Scholar 

  59. Cavaillé F, Fournier T, Dallot E, Dhellemes C, Ferr F (1995) Myosin heavy chain isoform expression in human myometrium. Cell Motil Cytoskel 30:183–193

    Google Scholar 

  60. Capriani A, Chiavegato A, Franch R, Azzarello G, Vinante O, Sartore S (1997) Oestrogen-dependent expression of SM2 smooth muscle type myosin isoform in rabbit myometrium. J Muscle Res Cell Motil 18:413–427

    Google Scholar 

  61. Chiavegato A, Scatena M, Roelofs M, Ferrarese P, Pauletto P, Passerini-Glazel G, Pagano F, Sartore S (1993) Cytoskeletal and cytocontractile protein composition of smooth muscle cells in developing and obstructed rabbit bladder. Exp Cell Res 207:310–320

    Google Scholar 

  62. Morano I, Erb G, Sogl B: Expression of myosin heavy and light chains changes during pregnancy in the rat uterus (1993) Eur J Physiol 1993;423:434–441

    Google Scholar 

  63. Mohammad MA, Sparrow MP (1988) Changes in myosin heavy chain stochiometry in pig tracheal smooth muscle during development. FEBS Lett 228:109–112

    Google Scholar 

  64. Mohammad MA, Sparrow MP (1989) Distribution of heavy-chain isoforms of myosin in airways smooth muscle from adult and neonate humans. Biochem J 260:421–426

    Google Scholar 

  65. Woodcock-Mitchell J, White S, Stirewalt W, Periasamy M, Mitchell J, Low R (1993) Myosin isoform expression in developing and remodeling rat lung. Am J Resp Cell Mol Biol 8:617–625

    Google Scholar 

  66. Chiavegato A, Pauletto P, Sartore S (1996) Smooth muscle-type myosin heavy chain isoforms in bovine smooth muscle and non-muscle tissues. Biol Cell 86:27–38

    Google Scholar 

  67. Rovner AS, Freyzon Y, Trybus KM (1997) An insert in the motor domain determines the functional properties of expressed smooth muscle myosin isoforms. J Muscle Res Cell Motil 18:103–110

    Google Scholar 

  68. Fisher SA, Ikebe M, Brozovich F (1997) Endothelin-1 alters the contractile phenotype of cultured embryonic smooth muscle cells. Circ Res 80:885–893

    Google Scholar 

  69. Katoh Y, Loukianov E, Kopras E, Zilberman A, Periasamy M (1994) Identification of functional promoter elements in the rabbit smooth muscle myosin heavy chain gene. J Biol Chem 269:30538–30545

    Google Scholar 

  70. Kallmeier RC, Somasundaram C, Babij P (1995) A novel smooth muscle-specific enhancer regulates transcription of the smooth muscle myosin heavy chain gene in vascular smooth muscle cells. J Biol Chem 270:30949–30957

    Google Scholar 

  71. White SL, Low RB (1996) Identification of promoter elements involved in cell-specific regulation of rat smooth muscle myosin heavy chain gene transcription. J Biol Chem 271:15008–15017

    Google Scholar 

  72. Watanabe M, Sakomura Y, Kurabayashi M, Manabe I, Aikawa M, Kuro-o M, Suzuki Y, Nagai R (1996) Structure and characterization of the 5′-flanking region of the mouse smooth muscle myosin heavy chain (SM1/SM2) gene. Circ Res 78:978–989

    Google Scholar 

  73. Madsen CS, Hershey JC, Hautmann MB, White SL, Owens GK (1997) Expression of the smooth muscle myosin heavy chain gene is regulated by a negative acting GC-rich element located between two positive-acting serum response factor-binding elements. J Biol Chem 272:6332–6340

    Google Scholar 

  74. van der Loop FTL, Schaart G, Timmer ED, Ramaekers FC, van Eys GJ (1996) Smoothelin, a novel cytoskeletal protein specific for smooth muscle cells. J Cell Biol 134:401–411

    Google Scholar 

  75. van der Loop FTL, Gabbiani G, Kohnen G, Ramaekers FCS, van Eys GJJM (1997) Differentiation of smooth muscle cells in human blood vessels as defined by smoothelin, a novel marker for the contractile phenotype. Arterioscler Thromb Vasc Biol 17:665–671

    Google Scholar 

  76. Wehrens XHT, Mies B, Gimona M, Ramaekers FCS, van Eys GJJM, Small JV (1997) Localization of smoothelin in avian smooth muscle and identification of a vascular-specific isoform. FEBS lett 405:315–320

    Google Scholar 

  77. Jain MK, Fujita KP, Hsieh C-M, Endege WO, Sibinga NE, Yet S-F, Kashiki S, Lee W-S, Perrella MA, Haber E, Lee M-E (1996) Molecular cloning and characterization of SmLIM, a developmentally regulated LIM protein preferentially expressed in aortic smooth muscle cells. J Biol Chem 271:10194–10199

    Google Scholar 

  78. Firulli AB, Olson EN (1997) Modular regulation of muscle gene transcription: a mechanism for cell diversity. Trends in Genetics 13:364–369

    Google Scholar 

  79. Vandekerckove J, Weber K (1978) At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal peptide. J Mol Biol 126:783–802

    PubMed  Google Scholar 

  80. Owens GK, Thompson MM (1986) Developmental changes in isoactin expression in rat aortic smooth muscle cells in vivo. Relationship between growth and cytodifferentiation. J Biol Chem 261:13373–13380

    Google Scholar 

  81. Eddinger TJ, Murphy RA (1991) Developmental changes in actin and myosin heavy chain isoform expression in smooth muscle. Arch Biochem Biophys 284:232–237

    Google Scholar 

  82. McHugh KM, Crawford K, Lessard JL (1991) A comprehensive analysis of the developmental and tissue-specific expression of the isoactin multigene family. Dev Biol 148:442–458

    Google Scholar 

  83. McHugh KM (1995) Molecular analysis of smooth muscle development in the mouse. Dev Dyn 204:278–290

    Google Scholar 

  84. Gabbiani G, Schmid E, Winter S, Chaponnier C, De Chastonay C, Vandekerckhove J, Weber K, Franke WW (1981) Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific α-type actin. Proc Natl Acad Sci USA 78:298–302

    Google Scholar 

  85. Fatigati V, Murphy RA (1984) Actin and tropomyosin variants in smooth muscles. J Biol Chem 259:14384–14388

    Google Scholar 

  86. Kim YS, Wang Z, Levin RM, Chacko S (1994) Alterations in the expression of the β-cytoplasmic and γ-smooth muscle actins in hypertrophied urinary bladder smooth muscle. Mol Cell Biochem 131:115–124

    Google Scholar 

  87. Yamamoto Y, Kubota T, Atoji Y, Suzuki Y (1996) Distribution of α-vascular smooth muscle actin in the smooth muscle cells of the gastrointestinal tract of the chicken. J Anat 189:623–630

    Google Scholar 

  88. Sawtell NM, Lessard JL (1989) Cellular distribution of smooth muscle actins during mammalian embyogenesis: expression of the α-vascular but not the γ-enteric isoform in differentiating striated muscle. J Cell Biol 109:2929–2937

    Google Scholar 

  89. Kim E, Waters S, Hake L, Hecht N (1989) Identification and developmental expression of a smooth muscle γ-actin in postmeiotic male germ cells of mice. Mol Cell Biol 9:1875–1881

    Google Scholar 

  90. Malmqvist U, Arner A, Uvelius B (1991) Contractile and cytoskeletal proteins in smooth muscle during hypertrophy and its reversal. Am J Physiol 260 (Cell Physiol 29):C1085–C1093

    Google Scholar 

  91. Schafer BW, Perriard JC (1988) Intracellular targeting of isoproteins in muscle cytoarchitecture. J Cell Biol 106:1161–1170

    Google Scholar 

  92. Drew JS, Moos C, Murphy RA (1991) Localization of isoactins in isolated smooth muscle thin filaments by double gold immunolabeling. Am J Physiol 260 (Cell Physiol 29):C1332–C1340

    Google Scholar 

  93. North AJ, Gimona M, Lando Z, Small JV (1994) Actin isoform compartments in chicken gizzard smooth muscle cells. J Cell Sci 107:445–455

    Google Scholar 

  94. Gabbiani G, Kocher O, Bloom WS, Vandekerckhove J, Weber K (1984) Actin expression in smooth muscle cells of rat aortic intimal thickening, human atheromatous plaque, and cultured rat aortic media. J Clin Invest 73:148–152

    Google Scholar 

  95. Lazard D, Sastre X, Frid MG, Glukhova MA, Thiery J-P, Koteliansky VE (1993) Expression of smooth muscle-specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue. Proc Natl Acad Sci USA 90:999–1003

    Google Scholar 

  96. Rønnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ (1995) The origin of the myofibroblasts in breast cancer. J Clin Invest 95:859–873

    Google Scholar 

  97. Jahoda CAB, Reynolds AJ, Chaponnier C, Forester JC, Gabbiani G (1991) Smooth muscle alpha-actin is a marker for hair follicle dermis in vivo and in vitro. J Cell Sci 99:627–636

    Google Scholar 

  98. Peled A, Zipori D, Abramsky O, Ovadia H, Shezen E (1991) Expression of smooth alpha-actin in murine bone marrow stromal cells. Blood 78:304–309

    Google Scholar 

  99. Gabbiani G (1996) The cellular derivation and life span of the myofibroblast. Path Res Pract 192:708–711

    Google Scholar 

  100. Ruzicka DL, Schwartz RJ (1988) Sequential activation of alpha actin genes during avian cardiogenesis: vascular smooth muscle alpha-actin gene transcripts mark the onset of cardiomyocyte differentiation. J Cell Biol 107:2575–2586

    Google Scholar 

  101. Woodcock-Mitchell J, Mitchell JJ, Low RB, Kieny M, Sengel P, Rubbia L, Skalli O, Jackson B, Gabbiani G (1988) Alpha-smooth muscle actin is transiently expressed in embryonic rat cardiac and skeletal muscles. Differentiation 39:161–166

    Google Scholar 

  102. Hungerford JE, Owens GK, Argraves WS, Little CD (1996) Development of the aortic vessel wall as defined by vascular smooth muscle and extracellular matrix markers. Dev Biol 178:375–392

    Google Scholar 

  103. Mitchell JJ, Reynolds SE, Leslie KO, Low RB, Woodcock-Mitchell J (1990) Smooth muscle cell markers in developing rat lung. Am J Respir Cell Mol Biol 3:515–523

    Google Scholar 

  104. Blank RS, McQuinn TC, Yin KC, Thompson MM, Takeyasu K, Schwartz RJ, Owens GK (1992) Elements of the smooth muscle α-actin promoter required in cis for transcriptional activation in smooth muscle. J Biol Chem 267:984–989

    Google Scholar 

  105. Shimizu RT, Blank RS, Jervis R, Lawrenz-Smith SC, Owens GK (1995) The smooth muscle α-actin gene promoter is differentially regulated in smooth muscle versus non-muscle cells. J Biol Chem 270:7631–7643

    Google Scholar 

  106. Li L, Miano JM, Mercer B, Olson EN (1996) Expression of the SM22α promoter in transgenic mice provides evidence for distinct transcriptional regulatory programs in vascular and visceral smooth muscle cells. J Cell Biol 132:849–859

    Google Scholar 

  107. Lees-Miller JP, Heeley DH, Smillie LB, Kay CM (1987) Isolation and characterization of an abundant and novel 22-kDa protein (SM22α) from chicken gizzard smooth muscle. J Biol Chem 262:2988–2993

    Google Scholar 

  108. Shanahan CM, Weisseberg PL, Metcalf JC (1993) Isolation of gene markers of differentiated and proliferating vascular smooth muscle cells. Circ Res 73:193–204

    Google Scholar 

  109. Solway J, Seltzer J, Samaha FF, Kim S, Alger LE, Niu Q, Morrisey EE, Ip HS, Parmacek MS (1995) Structure and expression of a smooth muscle cell-specific gene, SM22α. J Biol Chem 270:13460–13469

    Google Scholar 

  110. Ayme-Southgate A, Lasko P, French C, Pardue ML (1989) Characterization of the gene for mp20: a Drosophila muscle protein that is not found in asynchronous oscillatory flight muscle. J Cell Biol 108:521–531

    Google Scholar 

  111. Ren W-Z, Ng GYK, Wang R-x, Wu PH, O'Dowd BF, Osmond DH, George SR, Liew C-C (1994) The identification of NP25: a novel protein that is differentially expressed by neuronal subpopulations. Mol Brain Res 22:173–185

    Google Scholar 

  112. Gimona M, Sparrow MP, Strasser P, Herzog M, Small JV (1992) Calponin and SM22 isoforms in avian and mammalian smooth muscle. Eur J Biochem 205:1067–1075

    Google Scholar 

  113. Duband J-L, Gimona M, Scatena M, Sartore S, Small JV (1993) Calponin and SM22 as differentiation markers of smooth muscle: spatiotemporal distribution during avian embryonic development. Differentiation 55:1–11

    Google Scholar 

  114. Li L, Miano P, Cserjesi P, Olson EN (1996) SM22α, a marker of adult smooth muscle, is expressed in multiple myogenic lineages during embryogenesis. Circ Res 78:188–195

    Google Scholar 

  115. Nishida W, Kitami Y, Hiwada K (1993) cDNA cloning and mRNA expression of calponin and SM22 in rat aorta smooth muscle cells. Gene 130:297–302

    Google Scholar 

  116. Moessler H, Mericskay M, Li Z, Nagl S, Paulin D, Small JV (1996) The SM22 promoter directs tissue-specific expression in arterial but not in venous or visceral smooth muscle cells in transgenic mice. Development 122:2415–2425

    Google Scholar 

  117. Kim S, Ip HS, Lu MM, Clendenin C, Parmacek MS (1997) A serum response factor-dependent transcriptional regulatory program identifies distinct smooth muscle cell lineages. Mol Cell Biol 17:2266–2278

    Google Scholar 

  118. Li L, Liu Z-c, Mercer B, Overbeek P, Olson EN (1997) Evidence for serum response regulatory networks governing SM22α transcription in smooth, skeletal, and cardiac muscle cells. Dev Biol 187:311–321

    Google Scholar 

  119. El-Mezgueldi M (1996) Calponin. Int J Biochem 28:1185–1189

    Google Scholar 

  120. Sobue K, Sellers JR (1991) Caldesmon, a novel regulatory protein in smooth muscle and nonmuscle actomyosin systems. J Biol Chem 266:12115–12118

    Google Scholar 

  121. Winder SJ, Walsh MP (1993) Calponin: thin-filament linked regulation of smooth muscle contraction. Cell Signal 5:677–686

    Google Scholar 

  122. Takahashi K, Nadal-Ginard B (1991) Molecular cloning and sequence analysis of smooth muscle calponin. J Biol Chem 266:13284–13288

    Google Scholar 

  123. North AJ, Gimona M, Cross RA, Small JV (1994) Calponin is localised in both the contractile apparatus and the cytoskeleton of smooth muscle cells. J Cell Sci 107:437–444

    Google Scholar 

  124. Hayashi K, Fujio Y, Kato I, Sobue K (1991) Structural and functional relationships between h-and l-caldesmons. J Biol Chem 266:355–361

    Google Scholar 

  125. Applegate D, Feng W, Gree RS, Taubman MB (1994) Cloning and expression of a novel acidic calponin isoform from rat aortic vascular smooth muscle. J Biol Chem 269:10683–10690

    Google Scholar 

  126. Sakurai H, Matuoka R, Furutani Y, Imamura S-i, Takao A, Momma K (1996) Expression of four myosin heavy chain genes in developing blood vessels and other smooth muscle organs in rabbits. Eur J Cell Biol 69:166–172

    Google Scholar 

  127. Miano JM, Olson EN (1996) Expression of the smooth muscle cell calponin gene marks the early cardiac and smooth muscle cell lineages during mouse embryogenesis. J Biol Chem 271:7095–7103

    Google Scholar 

  128. Strasser P, Gimona M, Moessler H, Herzog M, Small JV (1993) Mammalian calponins. Identification and expression of genetic variants. FEBS lett 330:13–18

    Google Scholar 

  129. Hayashi K, Yano K, Hashida T, Takeuchi R, Takeda O, Asada K, Takahashi E, Kato I, Sobue K (1992) Genomic structure of human caldesmon gene. Proc Natl Acad Sci USA 89:12122–12126

    Google Scholar 

  130. Yano H, Hayashi K, Haruna M, Sobue K (1994) Identification of two distinct promoters in the chicken caldesmon gene. Biochem Biophys Res Commun 201:618–626

    Google Scholar 

  131. Yano H, Hayashi K, Momiyama T, Saga H, Haruna M, Sobue K (1995) Transcriptional regulation of the chicken caldesmon gene. J Biol Chem 270:23661–23666

    Google Scholar 

  132. Frid MG, Shekhonin BV, Koteliansky VE, Glukhova MA (1992) Phenotypic changes of human smooth muscle cells during development: late expression of heavy caldesmon and calponin. Dev Biol 153:185–193

    Google Scholar 

  133. Glukhova MA, Frid MG, Koteliansky VE (1991) Phenotypic changes of human aortic smooth muscle cells during development and in the adult vessel. Am J Physiol Suppl 261:78–80

    Google Scholar 

  134. Borrione AC, Zanellato AMC, Scannapieco G, Pauletto P, Sartore S (1989) Myosin heavy-chain isoforms in adult and developing rabbit vascular smooth muscle. Eur J Biochem 183:413–417

    Google Scholar 

  135. Gaylinn BD, Eddinger TJ, Martino PA, Monical PL, Hunt DF, Murphy RA (1989) Expression of nonmuscle myosin heavy and light chains in smooth muscle. Am J Physiol 257 (Cell Physiol 26):C997–C1004

    Google Scholar 

  136. Kawamoto S, Adelstein RS (1991) Chicken nonmuscle myosin heavy chains: differential expression of two mRNAs and evidence for two different polypeptides. J Cell Biol 112:915–924

    Google Scholar 

  137. Murakami N, Elzinga M (1992) Immunohistochemical studies on the distribution of cellular myosin II isoforms in brain and aorta. Cell Motil Cytoskel 22:281–295

    Google Scholar 

  138. Aikawa M, Nalla Sivam P, Kuro-o M, Kimura K, Nakahara K, Takewaki S, Ueda M, Yamaguchi H, Yazaki Y, Periasamy M, Nagai R (1993) Human smooth muscle myosin heavy chain isoforms as molecular markers for vascular development and atherosclerosis. Circ Res 73:1000–1012

    Google Scholar 

  139. Sun W, Chantler PD (1992) Cloning of the cDNA encoding a neuronal myosin heavy chain from mammalian brain and its differential expression within the central system. J Mol Biol 224:1185–1193

    Google Scholar 

  140. Takahashi M, Kawamoto S, Adelstein RS (1992) Evidence for inserted sequences in the head region of nonmuscle myosin specific to the nervous system. J Biol Chem 267:17864–17871

    Google Scholar 

  141. Murakami N, Trenkner E, Elzinga M (1993) Changes in expression of nonmuscle myosin heavy chain isoforms during muscle and nonmuscle tissue development. Dev Biol 157:19–27

    Google Scholar 

  142. Simons M, Wang M, McBride OW, Kawamoto S, Yamakawa K, Gdula D, Adelstein RS, Weir L (1991) Human nonmuscle myosin heavy chains are encoded by two genes located on different chromosomes. Circ Res 69:530–539

    Google Scholar 

  143. Phillips CL, Yamakawa K, Adelstein RS (1995) Cloning of the cDNA encoding human nonmuscle myosin heavy chain-B and analysis of human tissues with isoform-specific antibodies. J Muscle Res Cell Motil 16:379–389

    Google Scholar 

  144. Choi OH, Park C-S, Itoh K, Adelstein RS, Beaven MA (1996) Cloning of the cDNA encoding rat myosin heavy chain-A and evidence for the absence of myosin heavy chain-B in cultured rat mast (RBL-2H3) cells. J Muscle Res Cell Motil 17:69–77

    Google Scholar 

  145. Kelley CA, Sellers JR, Gard DL, Bui D, Adelstein RS (1996) Xenopus nonmuscle myosin heavy chain isoforms have different subcellular localization and enzymatic activities. J Cell Biol 134:675–687

    Google Scholar 

  146. Itoh K, Adelstein RS (1995) Neuronal cell expression of inserted isoforms of vertebrate nonmuscle myosin heavy chain-IIB. J Biol Chem 270:14533–14540

    Google Scholar 

  147. Pato MD, Sellers JR, Preston YA, Harvey EV, Adelstein RS (1996) Baculovirus expression of chicken nonmuscle heavy meromyosin II-B. J Biol Chem 271:2689–2695

    Google Scholar 

  148. Murakami N, Mehta P, Elzinga M (1991) Studies on the distribution of cellular myosin with antibodies to isoform-specific synthetic peptides. FEBS lett 278:23–25

    Google Scholar 

  149. Giuriato L, Scatena M, Chiavegato A, Tonello M, Scannapieco G, Pauletto P, Sartore S (1992) Non-muscle myosin isoforms and cell heterogeneity in developing rabbit vascular smooth muscle. J Cell Sci 101:233–246

    Google Scholar 

  150. Sartore S, Chiavegato A, Franch R, Faggin E, Pauletto P (1997) Myosin gene expression and cell phenotypes in vascular smooth muscle during development, in experimental models, and in vascular disease. Arterioscler Thromb Vasc Biol 17:1210–1215

    Google Scholar 

  151. Simons M, Rosenberg RD (1992) Antisense nonmuscle myosin heavy chain and c-myb oligonucleotides suppress smooth muscle cell proliferation in vitro. Circ Res 70:835–843

    Google Scholar 

  152. Kelley CA, Oberman F, Yisraeli JK, Adelstein RS (1995) A Xenopus nonmuscle myosin heavy chain isoform is phosphorylated by cyclin-p34cdc2 kinase during meiosis. J Biol Chem 270:1395–1401

    Google Scholar 

  153. Elledge SJ (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672

    Google Scholar 

  154. Kriajevska MV, Cardenas MN, Grigorian MS, Ambartsumian NS, Georgiev GP, Lukanidin EM (1994) Non-muscle myosin heavy chain as a possible target for protein encoded by metastasis-related mts-1 gene. J Biol Chem 269:19679–19682

    Google Scholar 

  155. Maupin P, Phillips CL, Adelstein RS, Pollard TS (1994) Differential localization of myosin-II isozymes in human cultured cells and blood cells. J Cell Sci 107:3077–3090

    Google Scholar 

  156. Amore B, Chiavegato A, Paulon T, Pauletto P, Sartore S (1996) Atherosclerosis resistance in rats correlates with lacking of expansion of an immature smooth muscle cell population. J Vasc Res 33:442–453

    Google Scholar 

  157. De Leon H, Scott NA, Martin F, Simonet L, Bernstein KE, Wilcox JN (1997) Expression of nonmuscle myosin heavy chain-B isoform in the vessel wall of porcine coronary arteries after ballon angioplasty. Circ Res 80:514–519

    Google Scholar 

  158. Giuriato L, Chiavegato A, Pauletto P, Sartore S (1995) Correlation between the presence of an immature smooth muscle cell population in tunica media and the development of atherosclerotic lesion. A study on different-sized rabbit arteries from cholesterol-fed and Watanabe heritable hyperlipemic rabbits. Atherosclerosis 116:77–92

    Google Scholar 

  159. Buoro S, Ferrarese P, Chiavegato A, Roelofs M, Scatena M, Pauletto P, Passerini-Glazel G, Pagano F, Sartore S (1993) Myofibroblast-derived smooth muscle cells during remodeling of rabbit urinary bladder wall induced by partial outflow obstruction. Lab Invest 69:589–602

    Google Scholar 

  160. Chiavegato A, Capriani A, Azzarello G, Vinante, Pauletto P, Sartore S (1996) Expression of non-muscle myosin isoforms in rabbit myometrium is estrogen-dependent. Cell Tissue Res 283:7–18

    Google Scholar 

  161. Turley H, Pulford KAF, Gatter KC, Mason DY (1988) Biochemical evidence that cytokeratins are present in smooth muscle. Br J Exp Pathol 69:433–440

    Google Scholar 

  162. Jahn L, Fouquet B, Rohe K, Franke WW (1987) Cytokeratins in certain endothelial and smooth muscle cells of two taxonomically distant vertebrate species, Xenopus laevis and man. Differentiation 36:234–254

    Google Scholar 

  163. Bader B, Jahn L, Franke WW (1988) Low levels of cytokeratin 8, 18 and 19 in vascular SMCs of human umbilical cord and cultured cells derived therefrom, and analyis of the locus containing the cytokerain 19 gene. Eur J Cell Biol 47:300–319

    Google Scholar 

  164. Johansson B, Eriksson A, Virtanen I, Thornell L-S (1997) Intermediate filament proteins in adult human arteries. Anat Rec 247:439–448

    Google Scholar 

  165. Frank ED, Warren, L (1981) Aortic smooth muscle cells contain vimentin instead of desmin. Proc Natl Acad Sci USA 78:3020–3024

    Google Scholar 

  166. Jahn L, Kreuzer J, von Hodenberg E, Kubler W, Franke WW, Allenberg J, Izumo S (1993) Cytokeratin 8 and 18 in smooth muscle cells. Arterioscler Thromb 13:1631–1639

    Google Scholar 

  167. Pampinella F, Roelofs M, Castellucci E, Chiavegato A, Guidolin D, Passerini-Glazel G, Pagano F, Sartore S (1996) Proliferation of submesothelial mesenchymal cells during early phase of serosal thickening in the rabbit bladder is accompanied by transient keratin 18 expression. Exp Cell Res 223:327–339

    Google Scholar 

  168. Glukhova M, Koteliansky VE, Fondacci C, Marotte F, Rappaport L (1993) Laminin variants and integrin laminin receptors in developing and adult human smooth muscle cells. Dev Biol 157:437–447

    Google Scholar 

  169. Dupla C, Couffinhal T, Dufourcq P, Llanas B, Moreau C, Bonnet J (1997) The integrin very late antigen-4 is expressed in human smooth muscle cell. Circ Res 80:159–169

    Google Scholar 

  170. Sheppard AM, Onken MD, Rosen GD, Noakes PG, Dean DC (1994) Expanding roles for α4 integrin and its ligands in development. Cell Adhesion Commun 2:27–43

    Google Scholar 

  171. Ruoslahti E (1988) Fibronectin and its receptors. Annu Rev Biochem 57:375–413

    Google Scholar 

  172. Schwartzbauer JE (1991) Alternative splicing of fibronectin: three variants, three functions. Bioassay 13:527–533

    Google Scholar 

  173. fFrench-Constant C, Hynes RO (1989) Alternative splicing of fibronectin is temporally and spatially regulated in the chicken embryo. Development 106:375–388

    Google Scholar 

  174. Glukhova MA, Frid MG, Shekhonin BV, Balabanov YV, Koteliansky VE (1990) Expression of fibronectin variants in vascular and visceral smooth muscle cells in development. Dev Biol 141:193–202

    Google Scholar 

  175. Pagani F, Zagato L., Vergani C, Casari G, Sidoli A, Bartalle FE (1991) Tissue-specific splicing pattern of fibronectin messanger RNA precursor during development and aging in rat. J Cell Biol 113:1223–1229

    Google Scholar 

  176. Dubin D, Peters JH, Brwon LF, Logan B, Kent KC, Berse B, Berven S, Cercek B, Sharifi BG, Pratt RE, Dzau VJ, Van de Water L (1995) Balloon catheterization induces arterial expression of embryonic fibronectins. Arterioscler Thromb Vasc Biol 15:1958–1967

    Google Scholar 

  177. Hosi M, Takahashi I, Pavlova-Rezakova A, Himeno H, Chobanian AV, Brecher P (1993) Selective induction of an embryonic fibronectin isoform in the rat aorta in vitro. Circ Res 73:689–695

    Google Scholar 

  178. Glukhova MA, Frid MG, Shekhonin BV, Vasilevskaya TD, Grunwald J, Saginati M, Koteliansky VE (1989) Expression of extradomain A fibronectin sequence is phenotypic dependent. J Cell Biol 109:357–366

    Google Scholar 

  179. Contard F, Sabri A, Glukhova M, Sartore S, Marotte F, Pomies JP, Schiavi P, Guez D, Samuel J-L, Rappaport L (1993) Arterial smooth muscle cell phenotype in stroke-prone spontaneously hypertensive rats. Hypertension 22:665–676

    Google Scholar 

  180. Himeno H, Crawford DC, Hosoi M, Chobanian AV, Brecher P (1994) Angiotensin II alters aortic fibronectin independently of hypertension. Hypertension 23[part2]:823–826

    Google Scholar 

  181. Bauters C, Marotte F, Hamon M, Oliviero P, Farhadian F, Robert V, Samuel J-L, Rappaport L (1995) Accumulation of fetal fibronectin mRNAs after balloon denudation of rabbit arteries. Circulation 92:904–911

    Google Scholar 

  182. Mecham RP, Stenmark KR, Parks WC (1991) Connective tissue production by vascular smooth muscle in development and disease. Chest 99:43S–47S

    Google Scholar 

  183. Noguchi A, Samaha H (1991) Developmental changes in tropoelastin gene expression in the rat lung studied by in situ hybridization. Am J Respir Cell Mol Biol 5:571–578

    Google Scholar 

  184. Noguchi A, Samaha H, DeMello DE (1992) Tropoelastin gene expression in the rat pulmonary vasculature: a developmental study. Pediatric Res 31:280–285

    Google Scholar 

  185. Durmowicz AG, Frid MG, Worley JD, Stenmark KR (1996) Expression and localization of the tropoelastin mRNA in the developing bovine pulmonary artery is dependent on vascular phenotype. Am J Respir Cell Mol Biol 14:569–576

    Google Scholar 

  186. Lowell Langille B (1993) Remodeling of developing and mature arteries: endothelium, smooth muscle, and matrix. J Cardiovasc Pharmacol 21 (Suppl 1):S11–S17

    Google Scholar 

  187. Osborn M, Caselitz J, Weber K (1981) Heterogeneity of intermediate filament expression in vascular smooth muscle: a gradient of desmin positive cells from the rat aortic arch to the level of the arteria iliaca communis. Differentiation 20:196–202

    Google Scholar 

  188. Kacem K, Seylaz J, Aubineau P (1996) Differential processes of vascular smooth muscle cell differentiation within elastic and muscular arteries of rats and rabbits: an immunofluorescence study of desmin and vimentin distribution. Histochem J 28:53–61

    Google Scholar 

  189. Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G (1986) A monoclonal antibody against α-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103:2787–2796

    Google Scholar 

  190. Kocher O, Gabbiani G (1986) Expression of actin mRNAs in rat aortic smooth muscle cells during development, experimental intimal thickening, and culture. Differentiation 32:245–251

    Google Scholar 

  191. Holifield B, Helgason T, Jemelka S, Taylor A, Navran S, Allen J, Seidel C (1996) Differentiated vascular myocytes: are they involved in neointimal formation? J Clin Invest 97:814–825

    Google Scholar 

  192. Meer DP, Eddinger TJ (1996) Heterogeneity of smooth muscle myosin heavy chain expression at the single cell level. Am J Physiol 270 (Cell Physiol 39):C1819–CC1824

    Google Scholar 

  193. Seidel CL, Helgason T, Allen JC, Wilson C (1997) Migratory abilities of different vascular cells from the tunica media of canine vessels. Am J Physiol 272 (Cell Physiol 41):C847–C852

    Google Scholar 

  194. Wohrley JD, Frid MG, Moiseeva EP, Orton EC, Belknap JK, Stenmark KR (1995) Hypoxia selectively induces proliferation in a specific subpopulation of smooth muscle cells in the bovine neonatal pulmonary arterial media. J Clin Invest 96:273–281

    Google Scholar 

  195. Yablonka-Reuveni Z, Schwartz SM, Christ B (1995) Development of chicken aortic smooth muscle: expression of cytoskeletal and basement membrane proteins defines two distinct cell phenotypes emerging from a common lineage. Cell Mol Biol Res 41:241–249

    Google Scholar 

  196. Babaev VR, Bobryshev YV, Stenina OV, Tararak EM, Gabbiani G (1990) Heterogeneity of smooth muscle cells in atheromatous plaque of human aorta. Am J Pathol 136:1031–1042

    Google Scholar 

  197. Pauletto P, Da Ros S, Capriani A, Chiavegato A, Pessina AC, Sartore S (1995) Smooth muscle cell types at different aortic levels and in microvasculature of rabbits with renovascular hypertension. J Hypertens 13:1679–1685

    Google Scholar 

  198. Price RJ, Owens GK, Skalak TC (1994) Immunohistochemical identification of arteriolar development using markers of smooth muscle differentiation. Evidence that capillary arterialization proceeds from terminal arterioles. Circ Res 75:520–527

    Google Scholar 

  199. Schwartz SM, Majesky MW, Murry CE (1995) The intima: development and monoclonal response to injury. Atherosclerosis 118 (Suppl):S125–S140

    Google Scholar 

  200. Gilbert SF (1988) Developmental biology. Sinauer Associates, Inc. Publishers, Sunderland, Massachusetts

    Google Scholar 

  201. Noden DM (1989) Embryonic origins and assembly of blood vessels. Am Rev Respir Dis 140:1097–1103

    Google Scholar 

  202. Poole TJ, Coffin JD (1989) Vasculogenesis and angiogenesis: two distinct morphogenetic mechanisms establish embryonic vascular pattern. J Exp Zool 251:224–231

    Google Scholar 

  203. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    Google Scholar 

  204. Schaper W, Wulf I (1996) Molecular mechanisms of coronary collateral vessel growth. Circ Res 79:911–919

    Google Scholar 

  205. Pardanaud L, Yassine F, Dieterlen-Lievre (1989) Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105:473–485

    Google Scholar 

  206. Cossu G, Tajbakhsh S, Buckingham M (1996) How is myogenesis intiated in the embryo? Trends Genetics 12:218–222

    Google Scholar 

  207. Topouzis S, Majesky MW (1996) Smooth muscle lineage diversity in the chick embryo. Two types of aortic smooth muscle cells differ in growth and receptor-mediated transcriptional responses to transforming growth factor-β. Dev Biol 178:430–445

    Google Scholar 

  208. Le Lievre C, Le Douarin N (1975) Mesenchymal derivatives of the neural crest: analysis of chimeric quail and chick embryos. J Embryol Exp Morphol 34:125–154

    Google Scholar 

  209. Kirby ML, Waldo KL (1995) Neural crest and cardiovascular patterning. Circ Res 77:211–215

    Google Scholar 

  210. Ito K, Sieber-Blum M (1993) Pluripotent and developmentally restricted neural-crest-derived cells in posterior visceral arches. Dev Biol 156:191–200

    Google Scholar 

  211. Brody JR, Cunha GR (1989) Histologic, morphometric, and immunocytochemical analysis of myometrial development in rats and mice. I. Normal development. Am J Anat 186:1–20

    Google Scholar 

  212. Simons-Assmann P, Kedinger M (1993) Heterotypic cellular cooperation in gut morphogenesis and differentiation. Semin Cell Biol 4:221–230

    Google Scholar 

  213. Minoo P, King RJ (1994) Epithelial-mesenchymal interactions in lung development. Annu Rev Physiol 56:13–45

    Google Scholar 

  214. Baskin LS, Hayward SW, Young PF, Cunha GR (1996) Ontogeny of the rat bladder: smooth muscle and epithelial differentiation. Acta Anat 155:163–171

    Google Scholar 

  215. Mikawa T, Gourdie RG (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174:221–232

    Google Scholar 

  216. Poelmann RE, Gittenberger-de Groot AC, Mentink MMT, Bökenkamp R, Hogers B (1993) Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res 73:559–568

    Google Scholar 

  217. Vrancken Peeters MPFM, Gittenberger-de Groot AC, Mentink MMT, Hungerford JE, Little CD, Poelmann RE (1997) The development of the coronary vessels and their differentiation into arteries and veins in the embryonic quail heart. Dev Dyn 208:338–348

    Google Scholar 

  218. Hood LC, Rosenquist TH (1992) Coronary artery development in the chick: origin and deployment of smooth muscle cells, and the effects of neural crest ablation. Anat Rec 234:291–300

    Google Scholar 

  219. Waldo KL, Kumiski DH, Kirby ML (1994) Association of the cardiac neural crest with development of the coronary arteries in the chick embryo. Anat Rec 239:315–331

    Google Scholar 

  220. Flamme I, Risau W (1992) Induction of vasculogenesis and hematopoiesis in vitro. Development 116:435–439

    Google Scholar 

  221. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169

    Google Scholar 

  222. Folkman J, D'Amore P (1996) Blood vessel formation: what is its molecular basis? Cell 87:1153–1155

    Google Scholar 

  223. Flamme I, Breier G, Risau W (1995) Expression of vascular endothelial growth factor (VFGF) and VFGF-receptor2 (flk-1) during induction of hemangioblastic precursurs and vascular differentiation in the quail embryo. Dev Biol 169:699–712

    Google Scholar 

  224. Cleaver O, Tonissen KF, Saha MS, Krieg PA (1997) Neovascularization of the Xenopus embryo. Dev Dyn 210:66–77

    Google Scholar 

  225. Venuti JM, Cserjesi P (1996) Molecular embryology of skeletal myogenesis. Curr Top Dev Biol 34:169–206

    Google Scholar 

  226. Saint-Jeannet J-P, Levi G, Girault J-LM, Koteliansky V, Thierry J-P (1992) Ventrolateral regionalization of Xenopus laevis mesoderm is characterized by the expression of α-smooth muscle actin. Development 115:1165–1173

    Google Scholar 

  227. Takahashi Y, Imanaka T, Takano T (1996) Spatial and temporal pattern of smooth muscle cell differentiation during development of the vascular system in the mouse embryo. Anat Embryol Berl 194:515–526

    Google Scholar 

  228. Lee SH, Hungerford JE, Little CD, Iruela-Arispe ML (1997) Proliferation and differentiation of smooth muscle cell precursors occurs simultaneously during the development of the vessel wall. Dev Dyn 209:342–352

    Google Scholar 

  229. Hungerford JE, Hoeffer JP, Bowers CW, Dahm LM, Falchetto R, Shabanowitz J, Hunt DF, Little LD (1997) Identification of a novel marker for primordial smooth muscle and its differential expression in contractile versus non-contractile cells. J Cell Biol 137:925–937

    Google Scholar 

  230. DeRuiter MC, Poelmann RE, VanMunsteren JC, Mironov V, Markwald RR, Gittenberger-de Groot A (1997) Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 80:444–451

    Google Scholar 

  231. Markwald RR, Fitzharris TP, Adams-Smith WN (1975) Structural analysis of endocardial cytodifferentiation. Dev Biol 42:160–180

    Google Scholar 

  232. Wrenn RW, Raeuber CL, Herman LE, Walton WJ, Rosenquist TH (1993) Transforming growth factor-beta: signal transduction via protein kinase C in cultured embryonic vascular smooth muscle cells. In vitro Cell Dev Biol 29A:73–76

    Google Scholar 

  233. Gadson PF, Dalton ML, Patterson E, Svoboda DD, Hutchinson L, Schram D, Rosenquist TH (1997) Differential response of mesoderm-and neural crest-derived smooth muscle to TGFβ1: regulation of c-myb and α1(I) procollagen genes. Exp Cell Res 230:169–180

    Google Scholar 

  234. Topouzis S, Catravas JD, Ryan JW, Rosenquist TH (1992) Influence of vascular smooth muscle heterogeneity on angiotensin converting enzyme activity in chicken embryonic aorta and in endothelial cells in culture. Circ Res 71:923–931

    Google Scholar 

  235. Dreher KL, Cowan K (1991) Expression of antisense transcripts encoding an extracellular matrix protein by stably transfected vascular smooth muscle cells. Eur J Cell Biol 54:1–9

    Google Scholar 

  236. Blaes N, Bourdillon M-C, Lamaziere JMD, Michaille J-J, Andujar M, Covacho C (1991) Isolation of two morphologically distinct cell lines from rat arterial smooth muscle expressing high tumorigenic potential. In Vitro Cell Dev Biol 27A:725–734

    Google Scholar 

  237. Ehler E, Jat PS, Nobme MD, Citi S, Draeger A (1995) Vascular smooth muscle cells of H-2Kb-tsA58 transgenic mice. Circulation 92:3289–3296

    Google Scholar 

  238. Majesky MW, Giachelli CM, Reidy MA, Schwartz SM (1992) Rat carotid neointimal smooth muscle cells reexpress a developmentally regulated mRNA phenotype during repair of arterial injury. Circ Res 71:759–768

    Google Scholar 

  239. Majesky MW, Benditt EP, Schwartz SM (1988) Expression and developmental control of platelet-derived growth factor A-chain and B-chain/Sis genes in rat aortic smooth muscle cells. Proc Natl Acad Sci USA 85:1524–1528

    Google Scholar 

  240. Lemire JM, Covin CW, White S, Giachelli CM, Schwartz SM (1994) Characterization of cloned aortic smooth muscle cells from young rats. Am J Pathol 1441068–1081

    Google Scholar 

  241. Schwartz SM, Foy L, Bowen-Pope DF, Ross R (1990) Derivation and properties of platelet-derived growth factor-independent rat smooth muscle cells. Am J Pathol 136:1417–1428

    Google Scholar 

  242. Bochaton-Piallat M-L, Gabbiani F, Ropraz P, Gabbiani G (1992) Cultured aortic smooth muscle cells from newborn and adult rats show distinct cytoskeletal features. Differentiation 49:175–185

    Google Scholar 

  243. Bochaton-Piallat M-L, Gabbiani F, Ropraz P, Gabbiani G (1993) Age influences the replicative activity and the differentiation features of cultured rat aortic smooth muscle cell populations and clones. Arterioscler Thromb 13:1449–1455

    Google Scholar 

  244. Bochaton-Piallat M-L, Gabbiani F, Ropraz P, Gabbiani G (1996) Phenotypic heterogeneity of rat arterial smooth muscle cell clones. Arterioscler Thromb Vasc Biol 16:815–820

    Google Scholar 

  245. Clowes AW, Reidey MA, Clowes MM (1983) Kinetics of cellular proliferation after arterial injury. Lab Invest 49:327–333

    Google Scholar 

  246. Lombardi DM, Reidy MA, Schwartz SM (1991) Methodological considerations important in the accurate quantitation of aortic smooth muscle cell replication in the normal rat. Am J Pathol 138:441–446

    Google Scholar 

  247. Cook CL, Weiser MCM, Schwartz PE, Jones CL, Majack RA (1994) Developmentally timed expression of an embryonic growth phenotype in vascular smooth muscle cells. Circ Res 74:189–196

    Google Scholar 

  248. Wyllie AH (1992) Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview. Cancer Metastasis Rev 11:95–103

    Google Scholar 

  249. Yeh ETH (1997) Life and death in the cardiovascular system. Circulation 95:782–786

    Google Scholar 

  250. Bennett MR, Angelini S, McEwan JR, Jagoe R, Newby AC, Evan GI (1994) Inhibition of vascular smooth muscle cell proliferation in vitro and in vivo by c-myc antisense oligodeoxynucleotides. J Clin Invest 93:820–828

    Google Scholar 

  251. Bennett MR, Littlewood TD, Hancock DC, Evan GI, Newby AC (1994) Down-regulation of the c-myc proto-oncogene inhibition of vascular smooth muscle cell proliferation: a signal for growth arrest? Biochem J 302:701–708

    Google Scholar 

  252. Bennett MR, Evan GI, Newby AC (1994) Deregulated c-myc oncogene expression blocks vascular smooth muscle cell inhibition mediated by heparin, interferon-γ, mitogen depletion and cyclic nucletide analogues and induces apoptotic cell death. Circ Res 74:525–536

    Google Scholar 

  253. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809

    Google Scholar 

  254. Bennett MR, Evan GI, Schwartz SM (1995) Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 95:2266–2274

    Google Scholar 

  255. Maione R, Amati P (1997) Interdependence between muscle differentiation and cell-cycle control. Biochim Biophys Acta 1332:M19–M30

    Google Scholar 

  256. Imai H, Lee KJ, Lee SK, Lee KT, O'Neal RM, Thomas WA (1979) Ultrastructural features of aortic cell in mitosis in control and cholesterol-fed swine. Lab Invest 23:401–415

    Google Scholar 

  257. Hay ED (1968) Dedifferentiation and metaplasia in vertebrate and invertebrate regeneration. In Ursprung H ed. The stability of differentiated state. Springer-Verlag, Heidelberg, pp. 85–108

    Google Scholar 

  258. Chamley-Campbell JH, Campbell GR, Ross R (1981) Phenotype-dependent response of cultured aortic smooth muscle to serum mitogens. J Cell Biol 89:379–383

    Google Scholar 

  259. Owens GK, Loeb A, Gordon D, Thompson MM (1986) Expression of smooth muscle-specific α-isoactin in cultured vascular smooth muscle cells: relationship between growth and cytodifferentiation. J Cell Biol 102:343–352

    Google Scholar 

  260. Rovner AS, Murphy RA, Owens GK (1986) Expression of smooth muscle and nonmuscle myosin heavy chains in cultured vascular smooth muscle cells. J Biol Chem 261:14740–14745.

    Google Scholar 

  261. Kawamoto S, Adelstein RS (1987) Characterization of myosin heavy chains in cultured aorta smooth muscle cells. J Biol Chem 262:7282–7288

    Google Scholar 

  262. Babij P, Kawamoto S, White S, Adelstein RS, Periasamy M (1992) Differential expression of SM1 and SM2 myosin isoforms in cultured vascular smooth muscle. Am J Physiol 262 (Cell Physiol 31):C607–C613

    Google Scholar 

  263. Birukov KG, Shirinsky VP, Stepanova OV, Thachuk VA, Hahn AWA, Resink TJ, Smirnov VN (1995) Stretch affects phenotype and proliferation of vascular smooth muscle cells. Mol Cell Biochem 144:131–139

    Google Scholar 

  264. Bobik A, Campbell JH (1993) Vascular derived growth factors: cell biology, pathophysiology, and pharmacology. Pharmacol Rev 45:1–42

    Google Scholar 

  265. De Mey JG, Uitendaal MP, Boonen HC, Vrijdag MJ, Daemen MJ, Struyker-Boudier HA (1989) Acute and long-term effects of tissue culture on contractile reactivity in renal arteries of the rat. Circ Res 65:1125–1135

    Google Scholar 

  266. Holycross BJ, Peach MJ, Owens GK (1993) Angiotensin II stimulates increased protein synthesis, not increased DNA synthesis, in intact rat aortic segments in vitro. J Vasc Res 30:80–86

    Google Scholar 

  267. Olson EN (1993) Regulation of muscle transcription by the MyoD family: the heart of the matter. Circ Res 72:1–6

    Google Scholar 

  268. Kemp PR, Metcalf JC, Grainger DJ (1995) Id-A dominant negative regulator of skeletal muscle differentiation-is not involved in maturation or differentiation of vascular smooth muscle cells. FEBS lett 368:81–86

    Google Scholar 

  269. Cserjesi PB, Lilly L, Bryson Y, Wang Y, Sassoon DA, Olson EN (1992) MHOX: a mesodermal restricted homeodomain protein that binds an essential site in the muscle creatine kinase enhancer. Development 115:1087–1101

    Google Scholar 

  270. Patel CV, Gorski DH, Lepage DF, Lincecum J, Walsh K (1992) Molecular cloning of a homeobox transcription factor from adult aortic smooth muscle. J Biol Chem 267:26085–26090

    Google Scholar 

  271. Miano JM, Firulli AB, Olson EN, Hara P, Giachelli CM, Schwartz SM (1996) Restricted expression of homeobox genes distinguishes fetal from adult human smooth muscle cells. Proc Natl Acad Sci USA 93:900–905

    Google Scholar 

  272. Gorski DH, Lepage DF, Patel CV, Copemand NG, Jenkins NA, Walsh K (1993) Molecular cloning of a diverged homeobox gene that is rapidly downregulated during the Go/G1 transition in vascular smooth muscle cells. Mol Cell Biol 13:3722–3733

    Google Scholar 

  273. Skopicki HA, Lyons GE, Schatteman G, Smith RC, Andrés V, Schirm S, Isner J, Walsh K (1997) Embryonic expression of the Gax homeodomain protein in cardiac, smooth and skeletal muscle. Circ Res 80:452–462

    Google Scholar 

  274. Epstein JA (1996) Pax3, neural crest and cardiovascular development. Trends Cardiovasc Med 6:255–261

    Google Scholar 

  275. Hollenberg SM, Sternglanz R, Cheng PF, Weintraub H (1995) Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol Cell Biol 15:3813–3822

    Google Scholar 

  276. Morrisey EE, Ip HS, Lu MM, Parmacek MS (1996) GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev Biol 177:309–322

    Google Scholar 

  277. Morrisey EE, Ip HS, Tang Z, Lu MM, Parmacek MS (1997) GATA-5: a transcriptional activator expressed in a novel temporally and spatially-restricted pattern during embryonic development. Dev Biol 183:21–36

    Google Scholar 

  278. Firulli AB, Miano JM, Bi W, Johnson AD, Casscells W, Olson EN, Schwartz JJ (1996) Myocyte enhancer binding factor-2 expression and activity in vascular smooth muscle cells. Circ Res 78:196–204

    Google Scholar 

  279. Pabst O, Schneider A, Brand T, Arrold A-H (1977) The mouse NKX2-3 homeodomain gene is expressed in gut mesenchyme during pre-and postnatal mouse development. Dev Dyn 209:29–35

    Google Scholar 

  280. Collins T, Ginsburg D, Boss JM, Orkin SH, Pober J (1985) Cultured human endothelial cells express platelet-derived growth factor B chain: cDNA cloning and structural analysis. Nature 316:748–750

    Google Scholar 

  281. Collins T, Pober JS, Gimbrone MA, Hammach B, Betsholtz B, Westermark B, Heldin C-H (1987) Cultured human endothelial cells express platelet-growth factor A chain. Am J Pathol 126:7–12

    Google Scholar 

  282. Hannan RL, Kourembanas S, Flanders KC, Roberts AB, Faller DV, Klagsbrun M (1988) Endothelial cells synthesize basic fibroblast growth factor and transforming growth factor beta. Growth Factors 1:7–17

    Google Scholar 

  283. D'Amore PA, Smith SR (1993) Growth factor effects on cells of the vascular wall: a survey. Growth Factors 8:61–75

    Google Scholar 

  284. Komuro I, Kurihara H, Sugiyama T, Takaku F, Yazaki Y (1988) Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells. FEBS lett 238:249–252

    PubMed  Google Scholar 

  285. Bradham DM, Igarashi A, Poter RL, Grotendorst GR (1991) Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol 114:1285–1294

    Google Scholar 

  286. Castellot JJjr, Addonizo MJ, Rosenberg R, Karnovsky MJ (1981) Cultured endothelial cells produce a heparin-like inhibitor of smooth muscle growth. J Cell Biol 90:372–379

    Google Scholar 

  287. Moses HL, Yang EY, Pietenpol JA (1990) TGF-beta stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 63:245–247

    PubMed  Google Scholar 

  288. Owens GK, Geisterfer AA, Yang YW, Komoriya A (1988) Transforming growth factor-beta-induced growth inhibition and cellular hypertrophy in cultured vascular smooth muscle cells. J Cell Biol 107:771–780

    Google Scholar 

  289. Kunzelman U, Dartsch PC (1992) Expression of smooth muscle alpha-actin and the proliferative activity of human smooth muscle cells in culture is influenced by endothelial-cell and fibroblast-conditioned medium. Cell Physiol Biochem 2:49–56

    Google Scholar 

  290. Vernon SM, Campos MJ, Haystead T, Thompson MM, DiCorleto PE, Owens GK (1997) Endothelial cell-conditioned medium downregulates smooth muscle contractile protein expression. Am J Physiol 272 (Cell Physiol 41):C582–C591

    Google Scholar 

  291. Blank RS, Owens GK (1990) Platelet-derived growth factor regulates actin isoform expression and growth state in cultured rat aortic smooth muscle cells. J Cell Physiol 142:635–642

    Google Scholar 

  292. Holycross BJ, Blank RS, Thompson MM, Peach MJ, Owens GK (1992) Platelet-derived growth factor-BB-induced suppression of smooth muscle cell differentiation. Circ Res 71:1525–1532

    Google Scholar 

  293. Reusch P, Wagdy H, Reusch R, Wilson E, Ives HE (1996) Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression in rat vascular smooth muscle cells. Circ Res 79:1046–1053

    Google Scholar 

  294. Campbell GR, Campbell JH (1986) Endothelial cells influences on vascular smooth muscle phenotype. Annu Rev Physiol 48:295–306

    Google Scholar 

  295. Desmouliére A, Rubbia-Brandt L, Gabbiani G (1991) Modulation of actin isoform expression in cultured arterial smooth muscle cells by heparin and culture conditions. Arterioscler Thromb 11:244–253

    Google Scholar 

  296. Orlandi A, Ropraz P, Gabbiani G (1994) Proliferative activity and α-smooth muscle actin expression in cultured rat aortic smooth muscle cells are differently modulated by transforming growth factor-β1 and heparin. Exp Cell Res 214:528–536

    Google Scholar 

  297. Barzu T, Hereber I-M, Desmouliére A, Carayon P, Pascal M (1994) Characterization of rat aortic smooth muscle cells resistant to the antiproliferative activity of heparin following long-term heparin treatment. J Cell Physiol 160:239–248

    Google Scholar 

  298. Majack RA (1987) Beta-type transforming growth factor specifies organizational behaviour in vascular smooth muscle cell cultures. J Cell Biol 105:465–471

    Google Scholar 

  299. Koyama N, Koshikawa T, Morisaki N, Saito Y, Yoshida S (1990) Bifunctional effects of transforming growth factor-β on migration of cultured rat aortic smooth muscle cells. Biochem Biophys Res Commun 169:725–729

    Google Scholar 

  300. Goodman LV, Majack RA (1989) Vascular smooth muscle cells express distinct transforming growth factor-β receptor phenotypes as a function of cell density in culture. J Biol Chem 264:5241–5244

    Google Scholar 

  301. Davidson JM, Zonia O, Liu J-M (1993) Modulation of transforming growth factor-beta 1 stimulated elastin and collagen production and proliferation in porcine vascular smooth muscle cells and skin fibroblasts by basic fibroblast growth factor, transforming growth factor-β, and insulin-like growth factor-1. J Cell Physiol 155:149–156

    Google Scholar 

  302. Björkerud S (1991) Effects of transforming growth factor-beta 1 on human arterial smooth muscle cells in vitro. Arterioscler Thromb 11:892–902

    Google Scholar 

  303. Majack RA, Majesky MW, Goodman LV (1990) Role of PDGF-A expression in the control of the vascular smooth muscle cell growth by transforming growth factor-beta. J Cell Biol 111:239–247

    Google Scholar 

  304. Stoufer GA, Owens GK (1994) TGF-β promotes proliferation of cultured SMC via both PDGF-AA-dependent and PDGF-AA-independent mechanisms. J Clin Invest 93:2048–2055

    Google Scholar 

  305. Campbell GR, Campbell JH, Manderson JA, Horrigan S, Rennick RE (1988) Arterial smooth muscle: a multifunctional mesenchymal cell. Arch Pathol Lab Med 112:977–986

    Google Scholar 

  306. Cassis LA, Lynch KR, Peach MJ (1988) Localization of angiotensinogen messanger RNA in the rat aorta. Circ Res 62:1259–1262

    Google Scholar 

  307. Daemen MJAP, Lombardi DM, Bosman FT, Schwartz SM (1991) Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res 68:450–456

    Google Scholar 

  308. Owens GK (1989) Control of hypertrophic versus hyperplastic growth of vascular smooth muscle cells. Am J Physiol (Heart Circ Physiol 26):H1755–H1765

    Google Scholar 

  309. Turla MB, Thompson MM, Corjay MH, Owens GK (1991) Mechanisms of angiotensin II-and arginine vasopressin-induced increases in protein synthesis and content in cultured rat aortic smooth muscle cells. Circ Res 68:288–299

    Google Scholar 

  310. Weber H, Taylor DS, Molloy CJ (1994) Angiotensin II induces delayed mitogenesis and cellular proliferation in rat aortic smooth muscle cells. J Clin Invest 93:788–798

    Google Scholar 

  311. Pauletto P, Sarzani R, Rappelli A, Chiavegato A, Pessina AC, Sartore S (1994) Differentiation and growth of vascular smooth muscle cells in experimental hypertension. Am J Hypertens 7:661–674

    Google Scholar 

  312. Itoh H, Mukoyama M, Pratt RE, Gibbons GH, Dzau VJ (1993) Multiple autocrine growth factors modulate vascular smooth muscle cell growth response to angiotensin II. J Clin Invest 91:2268–2274

    Google Scholar 

  313. Sabri A, Levy B, Poitevin P, Caputo L, Faggin E, Marotte F, Rappaport L, Samuel J-L (1997) Differential role of AT1 and AT2 receptor subtypes in vascular trophic and phenotypic changes in response to stimulation with angiotensin II. Arterioscler Thromb Vasc Biol 17:257–264

    Google Scholar 

  314. Miano JM, Vlasic N, Tota RR, Stemerman MB (1993) Localization of fos and jun proteins in rat aortic smooth muscle cells following vascular injury. Am J Pathol 142:715–724

    Google Scholar 

  315. Miano JM, Vlasic N, Tota RR, Stemerman MB (1993) Smooth muscle cell immediate-early gene and growth factor activation follows vascular injury. Arterioscler Thromb 13:211–219

    Google Scholar 

  316. Bondjers G, Glukhova M, Hansson GK, Postnov YV, Reidy MA, Schwartz SM (1991) Hypertension and atherosclerosis. Cause and effect, or two effects with one unknown cause? Circulation 84(supplVI):VI–2–VI–16

    Google Scholar 

  317. Hsieh HJ, Li NH, Frangos JA (1991) Shear stress increases endothelial platelet-derived growth factor mRNA levels. Am J Physiol 260:H642–H646

    Google Scholar 

  318. Rosati C, Garay G (1991) Flow-dependent stimulation of sodium and cholesterol uptake and cell growth in cultured vascular smooth muscle. J Hypertens. 9:1029–1033

    Google Scholar 

  319. Karim OMA, Pienta K, Seki N, Mostwin JL (1992) Stretch-mediated visceral smooth muscle growth in vitro. Am J Physiol 262(Regulatory Integrative Comp Physiol):R895–R900

    Google Scholar 

  320. Wang Z, Gopalakurup SK, Levin RM, Chacko S (1995) Expression of smooth muscle myosin isoforms in urinary bladder smooth muscle during hypertrophy and regression. Lab Invest 73:244–251

    Google Scholar 

  321. Owens GK, Vernon SM, Madsen CS (1996) Molecular regulation of smooth muscle cell differentiation. J Hypertens 14(suppl 5):S55–S64

    Google Scholar 

  322. Pauletto P, Scatena M, Chiavegato A, Giuriato L, Faggin E, Sarzani R, Rappelli A, Grisenti A, Pessina AC, Sartore S (1994) Hyperplastic growth of aortic smooth muscle cells in renovascular hypertensive rabbits is accompanied by the expansion of an immature cell phenotype. Circ Res 74/774–788

    Google Scholar 

  323. Owens GK, Reidy M (1985) Hyperplastic growth response of vascular smooth muscle cells following induction of acute hypertension in rats by aortic coarctation. Circ Res 57:695–705

    Google Scholar 

  324. Kolpakov V, Rekhter MD, Gordon D, Wang WH, Kulik TJ (1995) Effect of mechanical forces on growth and matrix protein synthesis in the in vitro pulmonary artery. Circ Res 77:823–831

    Google Scholar 

  325. Bardy N, Karillon GJ, Merval R, Samuel J-L, Tedgui A (1995) Differental effects of pressure and flow on DNA and protein synthesis and on fibronectin expressin by arteries in a novel organ culture system. Circ Res 77:684–694

    Google Scholar 

  326. Hishikawa K, Nakaki T, Marumo T, Hayashi M, Suzuki H, Kato R, Saruta T (1994) Pressure promotes DNA synthesis in rat cultured vascular smooth muscle cells. J Clin Invest 93:1975–1980

    Google Scholar 

  327. Owens GK (1996) Role of mechanical strain in regulation of differentiation of vascular smooth muscle cells. Circ Res 79:1054–1055

    Google Scholar 

  328. Levin RM, Monson FC, Haugaard N, Buttyan R, Hudson A, Roelofs M, Sartore S, Wein AJ (1995) Genetic and cellular characteristics of bladder outlet obstruction. Urol Clin North Am 22:263–283

    Google Scholar 

  329. Chen MW, Krasnapolsky L, Levin RM, Buttyan R (1994) An early molecular response induced by acute overdistension of the rabbit urinary bladder. Mol Cell Biochem 132:39–44

    Google Scholar 

  330. Levin RM, Wein AJ, Buttyan R, Monson FC, Longhurst PA (1994) Update on bladder smooth-muscle physiology. World J Urol 12:226–232

    Google Scholar 

  331. Baskin LS, Sutherland RS, Thomson AA, Hayward SW, Cunha GR (1996) Growth factors and receptors in bladder development and obstruction. Lab Invest 75:157–166

    Google Scholar 

  332. Thyberg J, Blomgren K, Hedin U, Dryjski M (1995) Phenotypic modulation of smooth muscle cells during the formation of neointimal thickenings in the rat carotid artery after balloon injury: an electron-microscopic and stereological study. Cell Tissue Res 281:421–433

    Google Scholar 

  333. Kocher O, Gabbiani F, Gabbiani G, Reidy MA, Cokay MS, Peters H, Hüttner I (1991) Phenotypic features of smooth muscle cells during the evolution of experimental carotid artery intimal thickening. Lab Invest 65:459–470

    Google Scholar 

  334. Simons M, Leclerc G, Safian RD, Isner JM, Weir L, Baim DS (1993) Relation between activated smooth-muscle cells in coronary artery lesions and restenosis after atheroctomy. N Engl J Med 328:608–613

    Google Scholar 

  335. Reckless J, Fleetwood G, Tilling L, Huber PAJ, Marston SB, Pritchard K (1994) Changes in the caldesmon isoform content and intimal thickening in the rabbit carotid artery induced by a silicone elastomer collar. Arterioscler Thromb 14:1837–1845

    Google Scholar 

  336. Okamoto E, Suzuki T, Aikawa M, Imataka K, Fujii J, Kuro-o M, Nakahara K, Hasegawa A, Yazaki Y, Nagai R (1996) Diversity of the synthetic state smooth-muscle cells proliferating in mechanically and hemodynamically injured rabbit arteries. Lab Invest 74:120–128

    Google Scholar 

  337. Orlandi A, Ehrlich P, Ropraz P, Spagnoli LG, Gabbiani G (1994) Rat aortic smooth muscle cells isolated from different layers and at different times after endothelial denudation show distinct biological features in vitro. Arterioscler Thromb 14:982–989

    Google Scholar 

  338. Neuville P, Geinoz A, Benzonana G, Redard M, Gabbiani F, Ropraz P, Gabbiani G (1997) Cellular retinol-binding protein-1 is expressed by distinct subsets of rat arterial smooth muscle cells in vitro and in vivo. Am J Pathol 150:509–521

    Google Scholar 

  339. Miano JM, Topouzis S, Majesky MW, Olson EN (1996) Retinoic receptor expression and all-trans retinoic acid-mediated growth inhibition in vascular smooth muscle cells. Circulation 93:1886–1895

    Google Scholar 

  340. Colbert MC, Kirby ML, Robbins J (1996) Endogeneous retinoic acid signaling colocalizes with advanced expression of the adult smooth muscle myosin heavy chain isoform during development of the ductus arteriosus. Circ Res 78:790–798

    Google Scholar 

  341. Gittenberger-de Groot A (1979) Morphology of the normal human ductus arteriosus. In Heyman MA, Rudolph AM, eds. The ductus arteriosus. Ross Conferences on Pediatric Research. Columbus, Ohio, Ross Laboratories:3–9

    Google Scholar 

  342. Kim HS, Aikawa M, Kimura K, Kuro-o M, Nakahara K, Suzuki T, Katoh H, Okamoto E, Yazaki Y, Nagai R (1993) Ductus arteriosus advanced differentiation of smooth muscle cells demonstrated by myosin heavy chain isoform expression in rabbits. Circulation 88:1804–1810

    Google Scholar 

  343. Lindner V, Giachelli CM, Schwartz SM, Reidy MA (1995) A subpopulation of smooth muscle cells ininjured rat arteries expresses platelet-derived growth factor-B chain mRNA. Circ Res 76:951–957

    Google Scholar 

  344. Bendeck MP, Regenass S, Tom WD, Giachelli CM, Schwartz SM, Hart C, Reidy MA (1996) Differential expression of α1 type VIII collagen in injured platelet-derived growth factor-BB-stimulated rat carotid arteries. Circ Res 79:524–531

    Google Scholar 

  345. Sibinga NES, Foster LC, Hsieh C-M, Perella MA, Lee W-S, Endege WO, Sage EH, Lee M-E, Haber E (1997) Collagen VIII is expressed by vascular smooth muscle cells in response to vascular injury. Circ Res 80:532–541

    Google Scholar 

  346. Murry CE, Bartosek T, Giachelli CM, Alpers CE, Schwartz SM (1996) Platelet-derived growth factor-A mRNA expression in fetal, normal adult, and atherosclerotic human aortas. Circulation 93:1095–1106

    Google Scholar 

  347. Giachelli CM, Schwartz SM, Liaw L (1995) Molecular and cellular biology of osteopontin. Trends Cardiovasc Med 5:88–95

    Google Scholar 

  348. Liaw L, Almeida M, Hart CE, Schwartz SM, Giachelli CM (1994) Osteopontin promotes vascular cell adhesion and spreading and is chemotactic for smooth muscle cells in vitro. Circ Res 74:214–224

    Google Scholar 

  349. Weintraub AS, Giachelli CM, Krauss RS, Almeida M, Taubman MB (1996) Autocrine secretion of osteopontin by vascular smooth muscle cells regulates their adhesion to collagen gels. Am J Pathol 149:259–272

    Google Scholar 

  350. Wang X, Louden C, Ohlstein E, Stadel JM, Gu J-L (1996) Osteopontin expression in platelet-derived growth factor-stimulated vascular smooth muscle cells and carotid artery after baloon angioplasty. Arterioscler Thromb Vasc Biol 16:1365–1372

    Google Scholar 

  351. Newman CM, Bruun BC, Porter KE, Mistry PK, Shanahan CM, Weissberg PL (1995) Osteopontin is not a marker for proliferating human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 15:2010–2018

    Google Scholar 

  352. Liaw L, Lombardi DM, Almeida MM, Schwartz SM, deBlois D, Giachelli CM (1997) Neutralizing antibodies directed against osteopontin inhibit rat carotid neointimal thickening after endothelial denudation. Arterioscler Thromb Vasc Biol 17:188–193

    Google Scholar 

  353. Choi ET, Engel L, Callow AD, Sun S, Trachtenberg J, Santoro S, Ryan US (1994) Inhibition of neointimal hyperplasia by blocking αvβ3 integrin with a small peptide antagonist GpenGRGDSPCA. J Vasc Surg 19:125–134

    Google Scholar 

  354. Zalewski A, Shi Y (1997) Vascular myofibroblasts. Arterioscler Thromb Vasc Biol 17:417–422

    Google Scholar 

  355. Okada TS (1986) Can specialized cells change their phenotype? Curr Topics Dev Biol. 20:XXV–XXXI

    Google Scholar 

  356. Jones R (1992) Ultrastructural analysis of contractile cell development in lung microvessels in hyperoxic pulmonary hypertension. Am J Pathol 141:1491–1505

    Google Scholar 

  357. Chiavegato A, Bochaton-Piallat M-L, D'Amore E, Sartore S, Gabbiani G (1995) Expression of myosin heavy chain isoforms in mammary epithelial cells and in myofibroblasts from different fibrotic settings during neoplasia. Virchows Archiv B 426:77–86

    Google Scholar 

  358. Galmiche MC, Koteliansky VE, Brère J, Hervé P, Charbord P (1993) Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 82:66–76

    Google Scholar 

  359. Li, J, Senseb L, Hervé P,Charbord (1995) Nontransformed colony-derived stromal cell lines from normal human marrows. II. Phenotypic characterization and differentiation pathway. Exp Hematol 23:133–141

    Google Scholar 

  360. Roelofs M, Wein AJ, Monson FC, Passerini-Glazel G, Koteliansky V, Sartore S, Levin RM (1995) Contractility and phenotype transitions in serosal thickening of obstructed rabbit bladder. J Applied Physiol 78:1432–1441

    Google Scholar 

  361. Pampinella F, Roelofs M, Castellucci E, Passerini-Glazel G, Pagano F, Sartore S (1997) Time dependent remodeling of the bladder wall in growing rabbits after partial outlet obstruction. J Urol 157:677–682

    Google Scholar 

  362. Sappino AP, Schürch W, Gabbiani G (1990) Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Lab Invest 63:144–161

    Google Scholar 

  363. Schmitt-Gräff A, Desmouliére A, Gabbiani G (1994) Heterogeneity of myofibroblast phenotypic features: an example of fibroblastic plasticity. Virchows Archiv 425:3–24

    Google Scholar 

  364. Darby I, Skalli O, Gabbiani G (1990) α-Smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63:21–29

    Google Scholar 

  365. Vracko R, Thorning D (1991) Contractile cells in rat myocardial scar tissue. Lab Invest 65:214–227

    Google Scholar 

  366. Andersen HR, Maeng M, Thorwest M, Falk E (1996) Remodeling rather than neointimal formation explains luminal narrowing after deep vessel wall injury. Circulation 93:1716–1724

    Google Scholar 

  367. Scott NA, Cipolla GD, Ross CE, Dunn B, Martin FH, Simonet L, Wilcox JN (1996) Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation 93:2178–2187

    Google Scholar 

  368. Shi Y, Pieniek M, Frad A, O'Brien J, Mannion JD, Zalewski (1996) Adventitial remodeling after coronary arterial injury. Circulation 93:340–348

    Google Scholar 

  369. Shi Y, O'Brien JE, Fard A, Mannion JD, Wang D, Zalewski A (1996) Adventitial myofibroblasts contribute to neointimal formation in injured porcine arteries. Circulation 94:1655–1664

    Google Scholar 

  370. Shi Y, O'Brien JE, Mannion JD, Morrison RC, Chung W, Fard A, Zalewski A (1997) Remodeling of autologous saphenous vein grafts. The role of perivascular myofibroblasts. Circulation 95:2684–2693

    Google Scholar 

  371. Suzuki T, Kim H-S, Kurabayashi M, Hamada H, Fujii H, Aikawa M, Watanabe M, Watanabe N, Sakomura Y, Yazaki Y, Nagai R (1996) Preferential differentiation of P19 mouse embryonal carcinoma cells into smooth muscle cells. Circ Res 78:595–404

    Google Scholar 

  372. Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Wong C, Hong MK, Kovach JA, Leon MB (1996) Arterial remodeling after coronary angioplasty. Circulation 94:35–43

    Google Scholar 

  373. Post MJ, Borst C, Pasterkamp G, Haudenschield (1995) Arterial remodeling and restenosis: a vague concept of a distinct phenomenon. Atherosclerosis 118(suppl):S115–S123

    Google Scholar 

  374. Schwartz SM, Reidy MA, deBlois D (1996) Factors important in arterial narrowing J Hypertens 14(suppl5):S71–S81

    Google Scholar 

  375. Blank RS, Swartz EA, Thompson MM, Olson EN, Owens GK (1995) A retinoic acid-induced clonal cell line derived from multipotential P19 embryonal carcinoma cells expresses smooth muscle characteristics. Circ Res 76:742–749

    Google Scholar 

  376. Slomp J, Gittenberger-de Groot A, Glukhova MA, van Munsteren JC, Kockx MM, Schwartz SM, Koteliansky VE (1997) Differentiation, dedifferentiation, and apoptosis of smooth muscle cells during the development of the human ductus arteriosus. Arterioscler Thromb Vasc Biol 17:1003–1009

    Google Scholar 

  377. Patapoutian A, Wold BJ, Wagner RA (1995) Evidence for developmentally programmed transdifferentiation in mouse esophageal muscle. Science 270:1818–1821

    Google Scholar 

  378. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler A, Shatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Google Scholar 

  379. Nadel EG (1995) Gene therapy for vascular diseases. Atherosclerosis 118(suppl):S51–S56

    Google Scholar 

  380. Sirois MG, Simons M, Edelman ER (1997) Antisense oligonucleotide inhibition of PDGFR-β receptor subunit expression directs suppression of intimal thickening. Circulation 95:669–676

    Google Scholar 

  381. Morishita R, Gibbons GH, Ellison KE, Nakajima M, von der Leyen H, Zhang L, Kaneda Y, Ogihara T, Dzau VJ (1994) Intimal hyperplasia after vascular injury is inhibited by antisense cdk 2 kinase oligonucleotides. J Clin Invest 93:1458–1464

    Google Scholar 

  382. Chang MW, Barr E, Lu MM, Barton K, Leiden JM (1995) Adenovirus-mediated over-expression of the cyclin/cyclin-dependent kinase inhibitor, p21, inhibits vascular smooth muscle cell proliferation and neointima formation in the rat carotid artery model of balloon angioplasty. J Clin Invest 96:2260–2268

    Google Scholar 

  383. Nabel EG, Yang Z, Liptay S, San H, Gordon D, Haudenschild CC (1993) Recombinant platelet-derived growth factor B gene expression in porcine arteries induces intimal hyperplasia in vivo. J Clin Invest 91:1822–1829

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this chapter

Cite this chapter

Sartore, S., Franch, R., Roelofs, M., Chiavegato, A. (1999). Molecular and cellular phenotypes and their regulation in smooth muscle. In: Reviews of Physiology Biochemistry and Pharmacology, Volume 134. Reviews of Physiology, Biochemistry and Pharmacology, vol 134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-64753-8_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-64753-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64753-9

  • Online ISBN: 978-3-540-68932-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics