Skip to main content

The Dimetal Center in purple acid phosphatases

  • Chapter
  • First Online:
Metal Sites in Proteins and Models

Part of the book series: Structure and Bonding ((4143,volume 89))

Abstract

Purple acid phosphatases (PAPs) contain a dinuclear metal center in their active site and hydrolyze phosphoric acid esters at low pH. Characteristic of this group of acid phosphatases is their resistance to inhibition by tartrate and their purple color, due to the presence of a tyrosine residue ligated to a ferric iron. The mammalian enzymes all contain a mixed-valent di-iron unit in their catalytic active form, first identified in the bovine spleen and porcine uterus enzymes, while a heterodinuclear Fe(III)Zn(II) unit has been characterized for the most studied plant enzyme from kidney bean. The enzymes from porcine uterus and bovine spleen can be converted into active FeZn forms and the plant enzyme can be transformed into an active FeFe form. In recent years the dimetal center of PAPs has been studied using numerous spectroscopic methods such as Mössbauer spectroscopy, EPR, NMR, EXAFS, magnetic, electrochemical and resonance Raman studies characterizing most of the metal coordinating residues, the metal-metal separation and providing evidence of the similarity between enzymes from different sources. Analysis of the products of hydrolysis of a substrate containing a chiral phosphorus by 31P NMR, stopped-flow measurements and kinetic studies all support a reaction path involving nucleophilic attack of a Fe(III)-bound hydroxide ligand on the phosphate ester. The recently solved crystal structure of the plant enzyme provides the structural basis for the understanding of the two-metal ion mechanism of this class of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Uf:

uteroferrin

afPAP:

Aspergillus ficuum purple acid phosphatase

ncPAP:

Neurospora crassa purple acid phosphatase

bsPAP:

bovine spleen purple acid phosphatase

kbPAP:

kidney bean purple acid phosphatase

sbPAP:

soy bean purple acid phosphatase

spPAP:

sweet potato purple acid phosphatase

PAP:

purple acid phosphatase

TRAP:

tartrate-resistant acid phosphatase

SQUID:

superconducting quantum interference device

ENDOR:

electron nuclear double resonance

ESSEM:

electron spin echo envelope modulation

EXAFS:

extended X-ray absorption fine structure

References

  1. Campbell HD, Zerner B (1973) Biochem Biophys Res Commun 54:1498

    Article  PubMed  Google Scholar 

  2. Chen TT, Baser FW, Cetorelli JJ, Pollard WE, Roberts RM (1973) J Biol Chem 248:8560

    PubMed  Google Scholar 

  3. Doi K, Antanaitis BC, Aisen P (1988) Struct Bonding 70:1

    Google Scholar 

  4. Que L Jr, True AE (1990) Prog Inorg Chem 38:97

    Google Scholar 

  5. Vincent JB, Olivier-Lilley GL, Averill BA (1990) Chem Rev 90:1447

    Article  Google Scholar 

  6. Li CY, Yam LT, Lam KW (1970) J Histochem Cytochem 18:473

    PubMed  Google Scholar 

  7. Li CY, Yam LT, Lam KW (1970) J Histochem Cytochem 18:901

    PubMed  Google Scholar 

  8. Yam LT, Li CY, Lam KW (1971) N Engl J Med 284:357

    PubMed  Google Scholar 

  9. Ketcham CM, Roberts RM, Simmen RCM, Nick HS (1989) J Biol Chem 264:557

    PubMed  Google Scholar 

  10. Ketcham CM, Baumbach GA, Bazer FW, Roberts RM (1985) J Biol Chem 260:5768

    PubMed  Google Scholar 

  11. Allen BS, Nuttleman PR, Ketcham CM, Roberts RM (1989) J Bone Miner Res 4:47

    PubMed  Google Scholar 

  12. Efstratiadis T, Moss DW (1985) Enzyme 33:34

    PubMed  Google Scholar 

  13. Schindelmeiser J, Schewe P, Zonka T, Münstermann D (1989) Histochemistry 92:81

    PubMed  Google Scholar 

  14. Lau K-HW, Freeman T, Baylink DJ (1987) J Biol Chem 262:1389

    PubMed  Google Scholar 

  15. Hara A, Sawada H, Kato T, Nakayama T, Yamamoto H, Matsumoto Y (1984) J Biochem 95:67

    PubMed  Google Scholar 

  16. Andersson GN, Ek-Rylander B, Hammarström LE (1984) Arch Biochem Biophys 228:431

    Article  PubMed  Google Scholar 

  17. Hara A, Kato T, Sawada H, Fukuyama K, Epstein WL (1985) Comp Biochem Physiol 82B:269

    Google Scholar 

  18. Nordlund P, Eklund H (1995) Curr Opin Struct Biol 5:758

    Article  PubMed  Google Scholar 

  19. Nochumson S, O'Rangers JJ, Dimitrov NV (1974) Fed Proc 33:1378

    Google Scholar 

  20. Beck JL, McConachie LA, Summors AC, Arnold WN, de Jersey J, Zerner B (1986) Biochim Biophys Acta 869:61

    Google Scholar 

  21. Fujimoto S, Nakagawa T, Ohara A (1977) Agric Biol Chem 41:599

    Google Scholar 

  22. LeBansky BR, McKnight TD, Grifing LR (1992) Plant Physiol 99:391

    Google Scholar 

  23. Uehara K, Fujimoto S, Taniguchi T (1974) J Biochem 75:627

    PubMed  Google Scholar 

  24. Hefler SK, Averill BA (1987) Biochem Biophys Res Commun 146:1173

    Article  PubMed  Google Scholar 

  25. Fujimoto S, Nakagawa T, Ishimitsu S, Ohara A (1977) Chem Pharm Bull 25:1459

    Google Scholar 

  26. Igaue I, Watabe H, Takahashi K, Takekoshi M, Morota A (1976) Agric Biol Chem 40:823

    Google Scholar 

  27. Patel KS, Lockless SW, McKnight TD (1997) Plant Mol Biol (in press)

    Google Scholar 

  28. Sträter N, Klabunde T, Tucker P, Witzel H, Krebs B (1995) Science 268:1489

    PubMed  Google Scholar 

  29. Klabunde T, Sträter N, Fröhlich R, Witzel H, Krebs B (1996) J Mol Biol 259:737

    Article  PubMed  Google Scholar 

  30. Beck JL, McArthur MJ, de Jersey J, Zerner B (1988) Inorg Chim Acta 153:39

    Article  Google Scholar 

  31. Beck JL, Keough DT, de Jersey J, Zerner B (1984) Biochim Biophys Acta 791:357

    PubMed  Google Scholar 

  32. Davis JC, Averill BA (1982) Proc Natl Acad Sci USA 79:4623

    PubMed  Google Scholar 

  33. Ullah AHJ, Mullaney EM, Dischinger HC Jr (1994) Biochem Biophys Res Commun 203:182

    Article  PubMed  Google Scholar 

  34. Jacobs MM, Nyc JF, Brown DM (1971) J Biol Chem 246:1419

    PubMed  Google Scholar 

  35. Glew RH, Heath EC (1971) J Biol Chem 246:1556

    PubMed  Google Scholar 

  36. Klabunde T, Sträter N, Krebs B, Witze1 H (1995) FEBS Lett 367:56

    Article  PubMed  Google Scholar 

  37. Beck JL, de Jersey J, Zerner B, Hendrich MP, Debrunner PG (1988) J Am Chem Soc 110:3317

    Article  Google Scholar 

  38. Suerbaum H, Körner M, Witzel H, Althaus E, Mosel B-D, Müller-Warmuth W (1993) Eur J Biochem 214:313

    Article  PubMed  Google Scholar 

  39. Hunt DF, Yates JR III, Shabanowitz J, Zhu N-Z, Zirino T, Averill BA, Daurat-Larroque ST, Shewale JG, Roberts RM, Brew K (1987) Biochem Biophys Res Commun 144:1154

    Article  PubMed  Google Scholar 

  40. Lord DK, Cross NCP, Bevilacqua MA, Rider SH, Gorman PA, Groves AV, Moss DW, Sheer D, Cox TM (1990) Eur J Biochem 189:287

    Article  PubMed  Google Scholar 

  41. Ek-Rylander B, Bill P, Norgård M, Nilsson S, Andersson G (1991) J Biol Chem 266:24684

    PubMed  Google Scholar 

  42. Cassady AI, King AG, Cross NCP, Hume DA (1993) Gene 130:201

    Article  PubMed  Google Scholar 

  43. Klabunde T, Stahl B, Suerbaum H, Hahner S, Karas M, Hillenkamp F, Krebs B, Witzel H (1994) Eur J Biochem 226:369

    Article  PubMed  Google Scholar 

  44. Vincent JB, Crowder MW, Averill BA (1991) Biochemistry 30:3025

    Article  PubMed  Google Scholar 

  45. Goldberg J, Huang H, Kwon Y, Greengard P, Nairn AC, Kuriyan J (1995) Nature 376:745

    Article  PubMed  Google Scholar 

  46. Grifith JP, Kim JL, Kim EE, Sintchak MD, Thomson JA, Fitzgibbon MJ, Fleming MA, Caron PR, Hsiao K, Navia MA (1995) Cell 82:507

    Article  PubMed  Google Scholar 

  47. Kissinger CR, Parge HE, Knighton DR, Lewis CT, Pelletier LA, Tempczyk A, Kalish VJ, Tucker KD, Showalter RE, Moomaw EW, Gastinel LN, Habuka N, Chen X, Maldonado F, Barker JE, Bacquet R, Villafranca JE (1995) Nature 378:641

    Article  PubMed  Google Scholar 

  48. Egloff M, Cohen PT, Reinemer P, Barford D (1995) J Mol Biol 254:942

    Article  PubMed  Google Scholar 

  49. Koonin EV (1994) Protein Sci 3:356

    PubMed  Google Scholar 

  50. Zhou S, Clemens JC, Stone RL, Dixon JE (1994) J Biol Chem 269:26234

    PubMed  Google Scholar 

  51. Ackerman GA, Hesse D (1970) Z Anorg Allg Chem 375:77

    Article  Google Scholar 

  52. Gaber BP, Miskowski V, Spiro TG (1974) J Am Chem Soc 96:6868

    Article  PubMed  Google Scholar 

  53. Ainscough EW, Brodie AM, Plowman JE, Brown KL, Addison AW, Gainsford AR (1980) Inorg Chem 19:3655

    Article  Google Scholar 

  54. Wood JM, Lipscomb JD, Que L. Jr, Stephens RS, Orme-Johnson WH, Münck E, Ridley WP, Dizikes L, Cheh A, Francia M, Frick T, Zimmerman R, Howard J (1977) Some bio-inorganic chemical reactions of environmental significance. In: Addison AW, Cullen WR, Dolphin D, James BR (eds) Biological Aspects of Inorganic Chemistry. Wiley-Interscience, New York. p 261

    Google Scholar 

  55. Tatsuno Y, Saecki Y, Iwaki M, Yagi T, Nozaki M, Kitagawa T, Otsuka S (1978) J Am Chem Soc 100:4614

    Article  Google Scholar 

  56. Gaber BP, Sheridan JP, Bazer FW, Roberts RM (1979) J Biol Chem 254:8340

    PubMed  Google Scholar 

  57. Antanaitis BC, Strekas T, Aisen P (1982) J Biol Chem 257:3766

    PubMed  Google Scholar 

  58. Averill BA, Davis JC, Burman S, Zirino T, Sanders-Loehr J, Loehr TM, Sage JT, Debrunner PG (1987) J Am Chem Soc 109:3760

    Article  Google Scholar 

  59. Debrunner PG, Hendrich MP, de Jersey J, Keough DT, Sage JT, Zerner B (1983) Biochim Biophys Acta 745:103

    PubMed  Google Scholar 

  60. Antanaitis BC, Aisen P, Lilienthal HR, Roberts RM, Bazer FW (1980) J Biol Chem 255:11204

    PubMed  Google Scholar 

  61. Muhoberac BB, Wharton DC, Babcock LM, Harrington PC, Wilkins RG (1980) Biochim Biophys Acta 626:37

    Google Scholar 

  62. Petersson L, Graslund A, Ehrenberg A, Sjöberg BM, Reichard P (1980) J Biol Chem 255:6706

    PubMed  Google Scholar 

  63. Sands RH, Dunham WR (1975) Quart Rev Biophys 7:443

    Google Scholar 

  64. Dietrich M, Münstermann D, Suerbaum H, Witzel H (1991) Eur J Biochem 199:105

    Article  PubMed  Google Scholar 

  65. Antanaitis BC, Aisen P, Lilienthal HR (1983) J Biol Chem 258:3166

    PubMed  Google Scholar 

  66. Lauffer RB, Antanaitis BC, Aisen P, Que L jr (1983) J Biol Chem 258:14212

    PubMed  Google Scholar 

  67. Day EP, David SS, Peterson J, Dunham WR, Bonvoisin JJ, Sands RH, Que L Jr (1988) J Biol Chem 263:15561

    PubMed  Google Scholar 

  68. Gehring S, Fleischhauer P, Behlendorf M, Hübner M, Lorösch J, Haase W, Dietrich M, Löcke R, Krebs B, Witzel H (1996) Inorg Chim Acta 252:13

    Article  Google Scholar 

  69. Kurtz D Jr (1990) Chem Rev 90, 585–606

    Article  Google Scholar 

  70. David SS, Que L Jr (1990) J Am Chem Soc 112:6455

    Article  Google Scholar 

  71. Sugiura Y, Kawabe H, Tanaka H, Fujimoto S, Ohara A (1981) J Biol Chem 256:10664

    PubMed  Google Scholar 

  72. Doi K, McCracken J, Peisach J, Aisen P (1988) J Biol Chem 263:5757

    PubMed  Google Scholar 

  73. Antanaitis BC, Aisen P (1985) J Biol Chem 260:751

    PubMed  Google Scholar 

  74. Pyrz JW, Sage JT, Debrunner PG, Que L Jr (1986) J Biol Chem 261:11015

    PubMed  Google Scholar 

  75. Sage JT, Xia Y-M, Debrunner PG, Keough, DT, de Jersey J, Zerner B (1989) J Am Chem Soc 111:7239

    Article  Google Scholar 

  76. Cichutek K, Witzel H, Parak F (1988) Hyperfine Interactions 42:885

    Google Scholar 

  77. Kauzlarich SM, Teo BK, Zirino T, Burman S, Davis JC, Averill BA (1986) Inorg Chem 25:2781

    Article  Google Scholar 

  78. True AE, Scarrow RC, Randall CR, Holz RC, Que L Jr (1993) J Am Chem Soc 115:4246

    Article  Google Scholar 

  79. Priggemeyer S, Eggers-Borkenstein P, Ahlers F, Henkel G, Körner M, Witzel H, Nolting HF, Hermes C, Krebs B (1995) Inorg Chem 34:1445

    Article  Google Scholar 

  80. Krebs B, Sift B (personal communication)

    Google Scholar 

  81. Bertini I, Luchinat C (1986) NMR of Paramagnetic Molecules in Biological Systems, Benjamin/Cummings, Menlo Park

    Google Scholar 

  82. Scarrow RC, Pyrz JW, Que L Jr (1990) J Am Chem Soc 112:657

    Article  Google Scholar 

  83. Wang Z, Ming L-J, Que L Jr (1992) Biochemistry 31:5263

    Article  PubMed  Google Scholar 

  84. Holz RC, Que L Jr, Ming L-J (1992) J Am Chem Soc 114:4434

    Article  Google Scholar 

  85. Battistuzzi G, Dietrich M, Löcke R, Witzel H (1997) Biochem J 323:593

    PubMed  Google Scholar 

  86. Crans DC, Simone CM, Holz RC, Que L Jr (1992) Biochemistry 31:11731

    Article  PubMed  Google Scholar 

  87. Schepers K, Bremer B, Krebs B, Henkel G, Althaus E, Mosel B, Müller-Warmuth W (1990) Angew Chem 102:582; Angew Chem Int Ed Engl 29:531

    Google Scholar 

  88. Krebs B, Schepers K, Bremer B, Henkel G, Althaus E, Müller-Warmuth W, Griesar K, Haase W (1994) Inorg Chem 33:1907

    Article  Google Scholar 

  89. Eulering B, Ahlers F, Zippel F, Schmidt M, Nolting H-F, Krebs B (1995) J Chem Soc Chem Comm: 1305

    Google Scholar 

  90. Jang HG, Hendrich MP, Que L Jr (1993) Biochemistry 32:911

    Article  Google Scholar 

  91. Wang DL, Holz RC, David SS, Que L Jr, Stankovich MT (1991) Biochemistry 30:8187

    Article  PubMed  Google Scholar 

  92. Crowder MW, Vincent JB, Averill BA (1992) Biochemistry 31:9603

    Article  PubMed  Google Scholar 

  93. Vincent JB, Crowder MW, Averill BA (1991) J Biol Chem 266:17737

    PubMed  Google Scholar 

  94. Wynne CJ, Hamilton SE, Dionysius DA, Beck JL, de Jersey J (1995) Arch Biochem Biophys 319:133

    Article  PubMed  Google Scholar 

  95. Mueller EG, Crowder MW, Averill BA, Knowles JR (1993) J Am Chem Soc 115:2974

    Article  Google Scholar 

  96. Baes CF, Mesmer E (1976) The Hydrolysis of Cations, Wiley-Interscience, New York

    Google Scholar 

  97. Aquino MAS, Lim J-S, Sykes AG (1994) J Chem Soc Dalton Trans: 429

    Google Scholar 

  98. Aquino MAS, Lim J-S, Sykes AG (1992) J Chem Soc Dalton Trans: 2135

    Google Scholar 

  99. Hayman AR, Cox TM (1994) J Biol Chem 269:1294

    PubMed  Google Scholar 

  100. Ek-Rylander B, Berkhem T, Husman B, Oehman L, Andersson KK, Andersson G (unpublished results)

    Google Scholar 

  101. Schindelmeiser J, Münstermann D, Witzel H (1987) Histochemistry 87:13

    PubMed  Google Scholar 

  102. Ek-Rylander B, Flores M, Wendel M, Heinegård D, Andersson, G (1994) J Biol Chem 269:14853

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernt Krebse .

Editor information

H. A. O. Hill P. J. Sadler A. J. Thomson

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Verlag

About this chapter

Cite this chapter

Klabunde, T., Krebse, B. (1997). The Dimetal Center in purple acid phosphatases. In: Hill, H.A.O., Sadler, P.J., Thomson, A.J. (eds) Metal Sites in Proteins and Models. Structure and Bonding, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62874-6_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-62874-6_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62874-3

  • Online ISBN: 978-3-540-69037-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics