Skip to main content

TurboBrain: A neural network with direct learning based on linear or Non-Linear Threshold Logics

  • CAST Tools and Environments
  • Conference paper
  • First Online:
Computer Aided Systems Theory — CAST '94

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1105))

Abstract

This paper deals with a significant extension of the neural Threshold Logic pioneered by McCulloch and Pitts. The output of their formal neuron is given by the Heaviside function with an argument depending on a linear weighted sum of the inputs and a threshold parameter. All Boolean Tables cannot be represented by such a formal neuron. For example the exclusive OR and the Parity Problem need hidden neurons to be resolved. A few years ago, Dubois proposed a non-linear fractal neuron to resolve the exclusive OR problem with only one single neuron. Then Dubois and Resconi introduce the Non-linear Threshold Logic, that is to say a Heaviside Function with a non-linear sum of the inputs which can represent any Boolean Tables with only one neuron where the Dubois' non-linear neuron model is a Heaviside Fixed Function. In this framework the Supervised Learning is Direct, that is to say without recursive algorithms for computing the weights and threshold, related to the new foundation of the Threshold Logic by Resconi and Raymondi. This paper will review the main aspects of the linear and non-linear threshold logic with direct learning and applications in pattern recognition with the software TurboBrain. This constitutes a new tool in the framework of neural CAST, Computer Aided Systems Theory and Technology, proposed by F. Pichler.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Anderson, Ed. Rosenfeld (eds): NEUROCOMPUTING. Foundations of Research, The MIT Press Cambridge, Massachusetts, London, 1988, 729 p.

    Google Scholar 

  2. M. L. Dertouzos: Threshold Logic: A Synthesis Approach. Res. Monogr. no. 32, The MIT Press, Massachusetts 1965

    Google Scholar 

  3. D. M. Dubois: Self-organisation of Fractal Objects in XOR rule-based Multilayer Networks. In: EC2 (ed.): Neural Networks & their Applications, Neuro-Nîmes, Proceedings of the 3rd International Workshop 1990, pp. 555–557

    Google Scholar 

  4. D. M. Dubois: Le Labyrinthe de l'Intelligence. InterEditions/Paris-Academia/Louvain-la-Neuve, 2nd edition, 1990, 331 p.

    Google Scholar 

  5. D. M. Dubois: Mathematical Fundamentals of the Fractal Theory of Artificial Intelligence. Communication & Cognition — Artificial Intelligence, 8, 1, 5–48 (1991)

    Google Scholar 

  6. D. M. Dubois, G. Resconi: Mathematical Foundation of a Non-linear Threshold Logic: a New Paradigm for the Technology of Neural Machines. ACADEMIE ROYALE DE BELGIQUE, Bulletin de la Classe des Sciences, 6ème série, Tome IV, 1–6, 91–122 (1993)

    Google Scholar 

  7. D. M Dubois, G. Resconi: Advanced Research in Non-linear Threshold Logic Applied to Pattern Recognition. COMETT European Lecture Notes in Threshold Logic. Edited by AILg, Association des Ingénieurs sortis de l'Université de Liège, D/1995/3603/02, 1995, 182 p.

    Google Scholar 

  8. D. M. Dubois, G. Resconi, A. Raymondi: TurboBrain 1.0: User's manual, D/1993/Dubois, Resconi, Raymondi: Editeurs, registered the 29th October 1993, 75 p.

    Google Scholar 

  9. K. Fukushima, M. Sei, I. Takayuki. IEEE, Transactions on Systems, Man and Cybernetics SMC-13:826–834(1983)

    Google Scholar 

  10. W. S. McCulloch, W. Pitts. Bulletin of Mathematical Biophysics 5:115–133 (1943)

    Google Scholar 

  11. M. L. Minsky, S. Papert. Perceptrons. MIT, Cambridge, 1969

    Google Scholar 

  12. W. Pitts, W. S. McCulloch. Bulletin of Mathematical Biophysics 9:127–147 (1947)

    Google Scholar 

  13. G. Resconi, A. Raymondi: A New Foundation for the Threshold Logic. Quaderno n∘3/93 del Seminario Matematico di Brescia, 1993, 46 p.

    Google Scholar 

  14. F. Rosenblatt: Principles Neurodynamics. Spartan, Washington DC, 1961

    Google Scholar 

  15. D. E. Rumelhart, G. E. Hinton, R. J. Williams. Nature 323:533–536 (1986)

    Google Scholar 

  16. D. E. Rumelhart, G. E. Hinton, R. J. Williams: Learning internal representations by error propagation. In: D. E. Rumelhart, J. L. McClelland (eds.): Parallel Distributed Processing Explorations in the Microstructures of Cognition, Vol. 1, Cambridge MA: MIT Press 1986, pp. 318–362

    Google Scholar 

  17. K. Zuse: The Computer — My Life. Springer-Verlag 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

George J. Klir Tuncer I. Ören

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dubois, D.M., Resconi, G., Raymondi, A. (1996). TurboBrain: A neural network with direct learning based on linear or Non-Linear Threshold Logics. In: Klir, G.J., Ören, T.I. (eds) Computer Aided Systems Theory — CAST '94. Lecture Notes in Computer Science, vol 1105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61478-8_83

Download citation

  • DOI: https://doi.org/10.1007/3-540-61478-8_83

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61478-4

  • Online ISBN: 978-3-540-68600-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics