Skip to main content

Thermodynamics of polymer solutions under flow: Phase separation and polymer degradation

  • Chapter
  • First Online:
Physical Properties of Polymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 120))

Abstract

The influence of flow on the free energy of polymer solutions is examined from several points of view both on macroscopic and microscopic bases. Application of non-equilibrium chemical potential to the phenomena of flow-induced phase separation and thermodynamically induced polymer degradation is reviewed. Polymer degradation under elongational flow was extensively covered in a recent review in this series. The thermodynamic theory is compared with the dynamical approaches used in the analysis of stability of solutions and it is seen under which conditions the criteria defining the spinodal line under shear (i.e. the limit of the stability region) are the same in both approaches. The thermodynamic analysis may be useful due to its greater simplicity though, in contrast, the details of the phase segregation or homogenisation and the analysis of the dynamical aspects (viscosity, light scattering) are beyond the reach of a strictly thermodynamic method. A short summary of the phenomenology of flow-induced changes in the phase diagram of polymer solutions under flow is given. Perspectives and open problems are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

affinity

A:

matrix of kinetic constants

ai :

activity of the species i

aα :

the droplet radius

b:

length of a segment of the polymer

B:

matrix including the hydrodynamic effects or matrix of kinetic constants

c:

number of moles per unit volume

\(\tilde c\) :

reduced concentration defined as [η]c

d:

slope of the curve η(\(\dot \gamma\)) with a change of sign

D:

curvilinear diffusion coefficient

DT :

effective diffusion coefficient in the shear direction

D 2 :

polymer self-diffusion coefficient

E:

deformation gradient tensor

f:

specific Helmholtz free energy

F:

force or thermodynamic force

g:

Gibbs free energy per unit volume

G*(ω):

complex stress-strain coefficient

ΔG M :

Flory-Huggins mixing Gibbs free energy

ΔG s :

non-equilibrium contribution to the Gibbs free energy

H:

elastic constant

J*(ω):

complex compliance

J:

steady-state compliance

J1, J:

diffusion fluxes

J s :

entropy flux

k′:

entropic elastic constant

kij :

kinetic constant for the breaking of a macromolecule P j to give P i

Kij :

chemical equilibrium constant defined by the rate k ij ij

l:

length of the duct

m:

ratio of the partial molar volume of the polymer to one of the solvent

M:

molecular weight

Mn :

number average for the molecular weight of the polymer

Mw :

weight average for the molecular weight of the polymer

M o :

molecular weight of a monomer

n:

number of molecules per unit volume (or number density)

ni :

number of moles of the species i

N:

number of segments in a polymer

NA :

Avogadro's number

ñ 1 :

number of moles of the solvent

ñ 2 :

number of moles of the solute

\(N_i^{(\dot \gamma )}\) :

number of chains with i monomers under a shear

p:

pressure

Δp :

pressure difference

P v :

viscous pressure tensor

P v ij :

components of the viscous pressure tensor

Pi :

chain with i monomers

q:

parameter for defining what kind of averaged molecular weight is used

Q:

flow rate

Qi :

normal modes of the chain

r:

distance to the axis of a duct

R:

constant of gases

R:

the end-to-end vector or the radius of the duct

R i :

the vector from bead i to bead i + 1

s:

specific entropy

T:

absolute temperature

Tc :

critical temperature

Tr:

trace of a tensor

u:

specific internal energy

u:

the local deformation vector

v:

specific volume

v:

velocity vector

V:

symmetric part of velocity gradient

xi :

molar fraction of the species i

W:

configuration tensor

z:

coordination number

α:

parameter of the most probable distribution or the friction coefficient

\(\dot \varepsilon\) :

the extensional rate

εij :

component of the strain tensor

ζ:

friction coefficient

Γ:

gamma function

\(\dot \gamma\) :

the shear rate

γ 0 :

amplitude of the oscillatory shear strain

\(\dot \gamma ^0\) :

amplitude of the oscillatory shear rate

γ′:

infinitesimal displacement gradient in the polymer phase

\(\dot \gamma _c\) :

critical shear rate

\(\dot \gamma _w\) :

shear rate at the wall

γ (0)αβ :

interfacial tension in the absence of flow

\(\dot \gamma _{0.8}\) :

shear rate for which η (\(\dot \gamma\)) is equal to 80% of η0

η:

shear viscosity

ηs :

viscosity of the pure solvent

η 0 :

viscosity for zero shear rate

η*(ω):

complex viscosity

[η]:

intrinsic viscosity

Θ:

theta temperature

ϑ:

the effective flexibility parameter

κ ij :

kinetic constant for the recombination of chains

λ:

correction to the chemical equilibrium reaction by effect of shear

λi :

eigenvalues of the matrix B

μi :

chemical potential of species i

μ 0i :

reference chemical potential of species i

μ (s)i :

non-equilibrium contribution to the chemical potential of i

μ 1s :

non-equilibrium contribution to the solvent chemical potential

μ p2 :

chemical potential under constant P v12

\(\mu _{\dot \gamma 2}\) :

chemical potential under constant \(\dot \gamma\)

μ w2 :

chemical potential under constant W

vi :

stoichiometric coefficient of i

π:

osmotic pressure

πφ :

equilibrium contribution to the osmotic pressure

πel :

non-equilibrium contribution to the osmotic pressure

σ:

the stress tensor

τ:

relaxation time

τd :

disengagement time

φ:

volume fraction of polymer

χ:

Flory's interaction parameter

ψ:

the configurational distribution function

ψ 0 :

the equilibrium distribution function

\(\Psi _1 (\dot \gamma )\) :

the first normal stress coefficient

\(\Psi _2 (\dot \gamma )\) :

the second normal stress coefficient

ω:

angular frequency

Ω:

solid angle

Ω:

orthogonal matrix to diagonalize B

10 References

  1. Rangel-Nafaile C, Metzner AB, Wissbrun KF (1984) Macromolecules 17: 1187

    Google Scholar 

  2. Wolf BA (1984) Macromolecules 17: 615

    Google Scholar 

  3. Tirrell M (1986) Fluid Phase Equilibria 30: 367

    Google Scholar 

  4. Silberberg A (1988) Physico Chem Hydrodyn 10: 693

    Google Scholar 

  5. Onuki A (1989) Phys Rev Lett 62: 2472

    PubMed  Google Scholar 

  6. Onuki A (1990) J Phys Soc Japan 59: 3423, 3427

    Google Scholar 

  7. Barham PJ, Keller A (1990) Macromolecules 23: 303

    Google Scholar 

  8. McHugh AJ (1982) Polym Engn Sci 22: 15

    Google Scholar 

  9. Utraki LA (1990) Polymer alloys and blends. Thermodynamics and rheology. Hanser Publishers, Munich

    Google Scholar 

  10. Tirrel M (1978) J Bioengn 2: 183

    Google Scholar 

  11. Barbu E, Jolly E (1953) Discuss. Faraday Soc 13: 77

    Article  Google Scholar 

  12. Nguyen TQ, Kausch H-H (1989) Makromol Chem 190: 1389

    Article  Google Scholar 

  13. Nguyen TQ, Kausch H-H (1992) Adv Polym Sci 100: 73

    Google Scholar 

  14. De Groot SR, Mazur P (1962) Non-equilibrium thermodynamics. North-Holland, Amsterdam

    Google Scholar 

  15. Meixner J (1954) Z. Naturforschung a 4: 594; 9: 654

    Google Scholar 

  16. Coleman BD (1964) Arch Rat Mech Anal 17: 1

    Google Scholar 

  17. Coleman BD (1965) Arch Rat Mech Anal 17: 230

    Google Scholar 

  18. Truesdell C (1971) Rational thermodynamics. McGraw-Hill, New York

    Google Scholar 

  19. Nettleton RE (1959) Phys Fluids 2: 256

    Article  Google Scholar 

  20. Müller I (1967) Z Phys 198: 329

    Article  Google Scholar 

  21. Jou D, Casas-Vázquez J, Lebon G (1979) J Non-Equilib Thermodyn 4: 349

    Google Scholar 

  22. Lebon G, Jou D, Casas-Vázquez J (1980) J Phys A 13: 275

    Google Scholar 

  23. Eu BC (1980) J Chem Phys 73: 2158

    Google Scholar 

  24. Casas-Vázquez J, Jou D, Lebon G (eds) (1984) Recent developments in non-equilibrium thermodynamics. Springer, Berlin (Lecture Notes in Physics, vol 199)

    Google Scholar 

  25. Müller I, Ruggeri T (eds) (1987) Symposium on kinetic theory and extended thermodynamics. Pitagora editrice, Bologna

    Google Scholar 

  26. Jou D, Casas-Vázquez J, Lebon G (1988) Rep Prog Phys 51: 1105

    Article  Google Scholar 

  27. García-Colín LS (1988) Rev Mex Física 34: 344

    Google Scholar 

  28. García-Colín LS, Uribe FJ (1991) J Non-Equilib Thermodyn 16: 89

    Google Scholar 

  29. Jou D, Casas-Vázquez J, Lebon G (1992) J Non-Equilib Thermodyn 17: 383

    Google Scholar 

  30. Sieniutycz S, Salamon P (eds) (1992) Extended thermodynamic systems. Taylor and Francis, New York (Advances in Thermodynamics, vol 7)

    Google Scholar 

  31. Lebon G, Jou D, Casas-Vázquez J (1992) Contemp Phys 33: 41

    Google Scholar 

  32. Bird RB, Armstrong RC, Hassager O (1977) Dynamics of polymeric liquids. Volume 1: Fluid mechanics. Wiley, New York

    Google Scholar 

  33. Bird RB, Curtiss CF, Armstrong RC, Hassager O (1977) Dynamics of polymeric liquids. Volume 2: Kinetic theory. Wiley, New York

    Google Scholar 

  34. Ferry JD (1971) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  35. Jou D, Casas-Vázquez J, Lebon G (1993) Extended irreversible thermodynamics. Springer, Berlin

    Google Scholar 

  36. Müller I, Ruggeri T (1993) Extended thermodynamics. Springer, Berlin

    Google Scholar 

  37. Lebon G, Pérez-García C, Casas-Vázquez J (1986) Physica A 137: 531

    Google Scholar 

  38. Lebon G, Pérez-García C, Casas-Vázquez J (1988) J Chem Phys 88: 5068

    Article  Google Scholar 

  39. Camacho J, Jou D (1990) J Chem Phys 92: 1339

    Article  Google Scholar 

  40. Coleman BD, Markovitz H (1964) J Appl Phys 35: 1

    Article  Google Scholar 

  41. Marrucci G (1972) Trans Soc Rheol 16: 321

    Article  Google Scholar 

  42. ver Stratte G, Philipoff W (1974) J Polym Sci: Polym Lett 12: 267

    Google Scholar 

  43. Breuer S, Onat ET (1964) Z Angew Math Phys 15: 184

    Article  Google Scholar 

  44. Gurtin ME, Herrera I (1965) Quart Appl Math 25: 235

    Google Scholar 

  45. Christensen RM (1971) Theory of viscoelasticity. An introduction. Academic Press, New York

    Google Scholar 

  46. Grmela M (1986) J Rheol 30: 707

    Article  Google Scholar 

  47. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, Oxford

    Google Scholar 

  48. Jou D, Micenmacher V (1987) J Phys A 20: 6519

    Google Scholar 

  49. Santos A, Brey JJ (1991) Physica A 174: 355

    Google Scholar 

  50. Janeschitz-Kriegl H (1969) Adv Polym Sci 6: 170

    Google Scholar 

  51. Sun Z-S, Denn MM (1972) AiChE J 18: 1010

    Article  Google Scholar 

  52. Sarti GC, Marrucci G (1973) Chem Engn Sci 28: 1053

    Article  Google Scholar 

  53. Booij HC (1984) J Chem Phys 80: 4571

    Article  Google Scholar 

  54. Kramers HA (1944) Physica 11: 1

    Article  Google Scholar 

  55. Lodge AS, Wu YJ (1971) Rheol Acta 10: 539

    Google Scholar 

  56. Bhattacharjee SM, Fredrickson GH, Helfand E (1989) J Chem Phys 90: 3305

    Article  Google Scholar 

  57. Lodge AS (1968) Rheol Acta 7: 379

    Google Scholar 

  58. de Gennes PG (1971) J Chem Phys 55: 572

    Article  Google Scholar 

  59. Durning CJ, Tabor M (1986) Macromolecules 19: 2220

    Article  Google Scholar 

  60. Doi M, Edwards SF (1978) J Chem Soc Faraday Trans II 74: 918

    Article  Google Scholar 

  61. Marrucci G, Grizzutti N (1983) J Rheol 27: 433

    Article  Google Scholar 

  62. Currie PK (1982) J Non-Newtonian Fluid Mech 11: 53

    Article  Google Scholar 

  63. Doi M, Edwards SF (1978) J Chem Soc Faraday Trans II 74: (a) 1789, (b) 1802, (c) 1818

    Google Scholar 

  64. McHugh AJ (1975) J Appl Polym Sci 19: 125

    Article  Google Scholar 

  65. Takayashi Y, Noda I, Nagasawa M (1990) Macromolecules 22: 242

    Article  Google Scholar 

  66. Criado-Sancho M, Jou D and Casas-Vázquez J (1991) Macromolecules 24: 2834

    Article  Google Scholar 

  67. Casas-Vázquez J, Jou D (1989) Acta Physica Hungarica 66: 99

    Google Scholar 

  68. Jou D, Casas-Vázquez J (1990) Physica A 163: 49

    Google Scholar 

  69. Jou D, Casas-Vázquez J (1992) Phys Rev A 45: 8371

    PubMed  Google Scholar 

  70. Criado-Sancho M, Jou D, Casas-Vázquez J (1993) J Non-Equilib Thermodyn 18: 103

    Google Scholar 

  71. Kramer H, Wolf BA (1985) Makromol Chem, Rapid Comm 6: 21

    Google Scholar 

  72. Graessly WW (1964) Fortschr Hochpolym-Forsch 16: 1

    Google Scholar 

  73. Vinogradov GV, Malkin A (1980) Rheology of polymers. Springer, Berlin

    Google Scholar 

  74. Kramer H, Schenck H, Wolf BA (1988) Makromol Chem 189: 2657

    Article  Google Scholar 

  75. Vrahopoulou-Gilbert E, McHugh AJ (1986) J Appl Polym Sci 31: 399

    Article  Google Scholar 

  76. Elyasevitch G (1982) Adv Polym Sci 43: 205

    Google Scholar 

  77. Silberberg A, Kuhn W (1954) J Polym Sci 13: 21

    Article  Google Scholar 

  78. Vanoene H (1972) J Colloid Interface Sci 40: 448

    Article  Google Scholar 

  79. Wolf BA (1980) Makromol Chem Rapid Comm 1: 231

    Article  Google Scholar 

  80. Silberberg A, Kuhn W (1952) Nature 170: 450

    Google Scholar 

  81. Scott RL (1949) J Chem Phys 17: 279

    Article  Google Scholar 

  82. Wolf BA, Kramer H (1980) J Polym Sci Polym Lett Ed 18: 789

    Article  Google Scholar 

  83. Lyngaae-Jorgensen J, Sondergaarrd K (1987) Polym Engn Sci 27: 351

    Article  Google Scholar 

  84. Takebe T, Sawaoka R, Hashimoto T (1989) J Chem Phys 91: 4369

    Article  Google Scholar 

  85. Takebe T, Fujioka K, Sawaoka R, Hashimoto T (1990) J Chem Phys 93: 5271

    Article  Google Scholar 

  86. Beysens D, Gbamadassi M, Boyer L (1979) Phys Rev Lett 43: 1253

    Article  Google Scholar 

  87. Beysens D, Gbamadassi M (1980) Phys Lett A 77: 171

    Article  Google Scholar 

  88. Onuki A, Kawasaki A (1980) Prog Theor Phys 63: 122

    Google Scholar 

  89. Mazich KA, Carr SH (1983) J Appl Phys 54: 5511

    Article  Google Scholar 

  90. Peterlin A, Turner DT (1965) J Polym Sci B 3: 517

    Article  Google Scholar 

  91. Peterlin A, Quan C, Turner DT (1965) J Polym Sci B 3: 521

    Article  Google Scholar 

  92. Matsuo T, Pavan A, Peterlin A, Turner DT (1967) J Colloid Interface Sci 24: 241

    Article  Google Scholar 

  93. Staudinger H (1932) Die hochmolekularen organischen Verbindungen. Springer, Berlin

    Google Scholar 

  94. Freudenberg K, Kuhn W, Durr W, Boltz F, Steinbrunn G (1930) Ber 63: 1510

    Google Scholar 

  95. Freudenberg K, Blomquist G (1935) Ber 68: 2070

    Google Scholar 

  96. Kuhn W (1930) Ber 63: 1502

    Google Scholar 

  97. Ekenstam A (1936) Ber 69: 549, 553

    Google Scholar 

  98. Senti F, Hellman N, Ludwig N, Babcock G, Tobin R, Gass C, Lambe B (1955) J Polym Sci 17: 527

    Article  Google Scholar 

  99. Antonini E, Bellelli M, Bruzzesi M, Caputo E, Chiancone E, Rossi-Farelli (1964) Biopolymers 2: 27

    Article  Google Scholar 

  100. Basedow AM, Ebert KH (1975) Makromol Chem 176: 745

    Article  Google Scholar 

  101. Mark H, Simha R (1940) Trans Faraday Soc 36: 611

    Article  Google Scholar 

  102. Simha R (1941) J Appl Phys 12: 569

    Article  Google Scholar 

  103. Montroll E (1941) J Am Chem Soc 63: 1215

    Article  Google Scholar 

  104. Montroll E, Simha R (1940) J Chem Phys 8: 721

    Article  Google Scholar 

  105. Basedow AM, Ebert KH, Ederer HJ (1978) Macromolecules 11, 774

    Article  Google Scholar 

  106. Bueche F (1960) J Appl Polym Sci 4: 101

    Article  Google Scholar 

  107. Frenkel Yu I (1944) Acta Physicochim. URSS 19: 51

    Google Scholar 

  108. Bestul AB (1956) J Chem Phys 24: 1196

    Article  Google Scholar 

  109. Ceresa RJ, Watson WF (1959) J Appl Polym Sci 1: 101

    Article  Google Scholar 

  110. Mullins L, Watson WF (1959) J Appl Polym Sci 1: 245

    Article  Google Scholar 

  111. Glynn PAR, van der Hoff BME, Reilly PM (1972) J Macromol Sci Chem A6: 1653

    Google Scholar 

  112. Ballauff M, Wolf BA (1981) Macromolecules 14: 654

    Article  Google Scholar 

  113. Ballauff M, Wolf BA (1984) Macromolecules 17: 209

    Article  Google Scholar 

  114. Ballauff M, Wolf BA (1988) Adv Polym Sci 85: 2

    Google Scholar 

  115. Henglein A (1956) Makromol Chem 18: 37

    Article  Google Scholar 

  116. Criado-Sancho M, Jou D, Casas-Vázquez J (1994) J Non-Equilib Thermodyn 19: 137

    Google Scholar 

  117. Wolf BA (1987) Makromol Chem Rapid Comm 8: 461

    Article  Google Scholar 

  118. Cukrowski AS, Popielawski J (1986) Chem Phys 109: 215

    Article  Google Scholar 

  119. Kurata M (1982) Thermodynamics of polymer solutions. Harwood Academic Publishers, Chur

    Google Scholar 

  120. Graessley WW (1974) Adv Polym Sci 16: 1

    Google Scholar 

  121. Helfand E, Fredrickson GH (1989) Phys Rev Lett 62: 2468

    PubMed  Google Scholar 

  122. Jou D, Camacho J, Grmela M (1991) Macromolecules 24: 3597

    Article  Google Scholar 

  123. Casas-Vázquez J, Criado-Sancho M, Jou D (1993) Europhys. Lett. 23: 469

    Google Scholar 

  124. Noziéres P, Quemada D (1986) Europhys Lett 2: 129

    Google Scholar 

  125. Thomas NL, Windle AH (1882) Polymer 23: 529

    Article  Google Scholar 

  126. Doi M (1990) in: Onuki A, Kawasaki K (eds) Dynamics and pattern in complex fluids: New aspects of physics and chemistry interfaces. Springer, Berlin

    Google Scholar 

  127. See H, Doi M, Larson R (1990) J Chem Phys 92: 792

    Article  Google Scholar 

  128. Aubert JH, Tirrel M (1980) Rheol Acta 19: 452

    Article  Google Scholar 

  129. Tirrell M, Malone MF (1977) J Polym Sci: Polym Phys Ed 15: 1569

    Article  Google Scholar 

  130. Hanley HJM, Evans DJ (1982) J Chem Phys 76: 3225

    Article  Google Scholar 

  131. Hanley HJM, Rainwater JC, Clark NA, Ackerson BJ (1983) J Chem Phys 79: 4448

    Article  Google Scholar 

  132. Olmsted PD, Goldbart P (1990) Phys Rev A 41: 4578

    PubMed  Google Scholar 

  133. Grmela M, Ly C (1987) Phys Lett A 120: 281

    Article  Google Scholar 

  134. Grmela M (1987) Phys Lett A 120: 276

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this chapter

Cite this chapter

Jou, D., Casas-Vázquez, J., Criado-Sancho, M. (1995). Thermodynamics of polymer solutions under flow: Phase separation and polymer degradation. In: Physical Properties of Polymers. Advances in Polymer Science, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58704-7_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-58704-7_4

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58704-0

  • Online ISBN: 978-3-540-49049-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics