Skip to main content

Effect of phase transition on swelling and mechanical behavior of synthetic hydrogels

  • Chapter
  • First Online:
Responsive Gels: Volume Transitions I

Part of the book series: Advances in Polymer Science ((POLYMER,volume 109))

Abstract

The effect of the concentration of the charge, its polarity, and position in the side chain together with the effect of amount of diluent and crosslinker at network formation on the appearance and the extent of the first-order phase transition in the swollen ionized polyacrylamide gels in water-acetone mixtures and in ionized poly (N,N′-diethylacrylamide) gels in water is summarized. The results of the swelling, photoelastic, and mechanical behavior together with small-angle neutron scattering, direct-current conductivity and dielectric measurements of these hydrogels in the collapse region are presented and it is shown that a jumpwise volume change at the transition correlates with jumpwise changes in the equilibrium modulus, the stress-optical coefficient, both components of the complex permittivity and modulus, and in the conductivity. The chains were found to have the form of a Gaussian coil in the expanded state and a compact globular structure in the collapsed state. The theory describing the swelling equilibria in polyelectrolyte networks is analyzed and it is shown that experimental swelling behavior of polyacrylamide gels at the collapse can be described by this theory if the correction factor for the effective degree of ionization is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

deformational-optical function

A :

front factor

a:

acetone content in a water-acetone mixture

C:

stress-optical coefficient

c:

concentration of co-ions

D:

dielectric constant of the medium

D :

sample diameter

e:

unit charge

ΔF:

change in Gibbs free energy

f:

force

fe :

average functionality of the junction

f-:

activity coefficient of co-ions

G:

shear modulus

G*:

complex shear modulus

h:

chain end-to-end distance

\(\overline {h_0^2 }\) :

mean-square end-to-end distance

i:

degree of ionization

I:

intensity of electric current

k:

Boltzmann constant

M0 :

molar mass of the monomer

n:

number of statistical segments in the chain

ng :

refractive index of the gel

nj :

number of mols of the j-th type ions in the gel

NA :

Avogadro constant

p:

external pressure

P:

swelling pressure

q:

scattering vector

r:

number of equivalent segments of the macromolecule

R:

gas constant

ℛ:

resistance

s:

number of monomeric units in the statistical segment

S 0 :

initial cross-section of the sample

t:

time

T:

temperature

U:

voltage

ΔU:

activation energy

V:

volume of the sample

V1 :

molar volume of the solvent

x1, x2 :

numbers of moles of the solvent and of the polymer

X:

swelling ratio

Z:

degree of polymerization of the chain

Δα :

optical anisotropy of the statistical segment

Δ:

extent of the collapse

κ:

inverse Debye radius

ρ:

density

ϕ 2 :

volume fraction of the polymer in the swollen gel

ϕ 0 :

volume fraction of the polymer at network formation

φ:

correction factor

Φi :

contribution to the swelling pressure Eq. (1)

\(\bar \chi\) :

Flory-Huggins interaction parameter

χc:

critical interaction parameter at the collapse

λ:

compression

Λ:

elongation

σ:

stress

dΣ(q)/dΩ:

differential effective scattering cross-section per unit volume of the sample

νd :

concentration of chains

α 20 〉:

dilatation factor

ω:

frequency

ε*:

complex permittivity

τ:

relaxation time

Θ:

scattering angle

SANS:

small-angle neutron scattering

PAAm:

polyacrylamide

PDEAAm:

poly(N,N′-diethylacrylamide)

MBAAm:

N,N′-methylenebisacrylamide

MNa:

sodium methacrylate

TEMED:

N,N′-tetramethylethylenediamine

I:

N,N,N-trimethyl-N-2-methacryloxyethylammonium chloride (salt I)

II:

N,N,N-trimethyl-N-4-methacryloxybutylammonium chloride (salt II)

III:

N,N,N-dimethyl-N-methoxycarbonylmethyl-N-2-methacryloyloxyethylammonium chloride (salt III)

IV:

N,N,N-dimethyl-N-butoxycarbonylmethyl-N-2-methacryloyloxyethylammonium chloride (salt IV)

6 References

  1. Dušek K, Patterson DJ (1968) J Polm Sci A-2 6: 1209

    Google Scholar 

  2. Dušek K, Prins W (1969) Adv Polym Sci 6: 1

    Google Scholar 

  3. Khokhlov A (1980) Polymer 21: 376

    Google Scholar 

  4. Tanaka T (1978) Phys Rev Lett 40: 820

    Google Scholar 

  5. Tanaka T (1979) Polymer 20: 1404

    Google Scholar 

  6. Janas VF, Rodrigues F, Cohen C (1980) Macromolecules 13: 977

    Google Scholar 

  7. Stejskal J, Gordon M, Torkington JA (1980) Polym Bull 3: 621

    Google Scholar 

  8. Tanaka T, Fillmore D, Sun S-T, Nishio I, Swislow G, Shah A (1980) Phys Rev Lett 45: 1636

    Google Scholar 

  9. Francois J, Sarazin D, Schwarz T, Weill G (1979) 20: 969

    Google Scholar 

  10. Ilavský M, Hrouz J, Stejskal J, Bouchal K (1984) Macromolecules 17: 2868

    Google Scholar 

  11. Ilavský M (1982) Macromolecules 15: 782

    Google Scholar 

  12. Nicoli D, Young C, Tanaka T, Pollak A, Whitesides GW (1983) Macromolecules 16: 887

    Google Scholar 

  13. Ilavský M, Hrouz J, Bouchal K (1985) Polym Bull 14: 301

    Google Scholar 

  14. Hirokawa Y, Tanaka T, Sato E (1985) Macromolecules 18: 2782

    Google Scholar 

  15. Katayama S, Ohata A (1985) Macromolecules 18: 2781

    Google Scholar 

  16. Ilavský M, Hrouz J, Ulbrich K (1982) Polym Bull 7: 107

    Google Scholar 

  17. Tanaka T (1987) In: Encyclopedia of polymer science and engineering, 2nd edn. Wiley, New York, p 514

    Google Scholar 

  18. Ilavský M, Hrouz J, Havlíček I (1985) 26: 1514

    Google Scholar 

  19. Gehrke SH, Andrews GP, Cussler EL (1986) Chem Eng Sci 41: 2153

    Google Scholar 

  20. Katayama S, Ohata A (1985) 18: 2781

    Google Scholar 

  21. Rička J, Tanaka T (1984) Macromolecules 17: 83

    Google Scholar 

  22. Ohmine I, Tanaka T (1982) 11: 5725

    Google Scholar 

  23. Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S (1982) Science 218: 467

    Google Scholar 

  24. Rička J, Tanaka T (1984) Macromolecules 17: 2916

    Google Scholar 

  25. Starodubcev SG, Khokhlov AR, Vasilevskaya VV (1985) Dokl Akad Nauk SSSR 282: 392

    Google Scholar 

  26. Ilavský M, Hrouz J (1982) Polym Bull 8: 387

    Google Scholar 

  27. Hirokawa Y, Tanaka T, Katayama S (1984) In: Marshall KC (ed) Microbial adhesion and aggregation. Springer, Berlin Heidelberg New York, p 177

    Google Scholar 

  28. Katayama S, Yamazaki F (in press) Macromolecules

    Google Scholar 

  29. Ilavský M, Hrouz J (1983) Polym Bull 9: 159

    Google Scholar 

  30. Hrouz J, Ilavský M (1989) Polym Bull 22: 271

    Google Scholar 

  31. Hrouz J, Ilavský M (1984) Polym Bull 12: 515

    Google Scholar 

  32. Nedbal J, Štula M, Ilavský M (1990) Polym Bull 23: 89

    Google Scholar 

  33. Lipták J, Nedbal J, Ilavský M (1987) Polym Bull 18: 81

    Google Scholar 

  34. Ilavský M (1981) Polymer 22: 1687

    Google Scholar 

  35. Hasa J, Ilavský M, Dušek (1975) J Polym Sci Polym Phys Edn 13: 253

    Google Scholar 

  36. Hasa J, Ilavský M (1975) J Polym Sci Polym Phys Edn 13: 263

    Google Scholar 

  37. Ilavský M, Dušek K, Vacík J, Kopeček J (1979) Appl Polym Sci 23: 2073

    Google Scholar 

  38. Katchalsky A, Lifson S (1953) J Polym Sci 11: 409

    Google Scholar 

  39. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, N.Y

    Google Scholar 

  40. Stanley HE (1971) Introduction to phase transitions and critical phenomena. Oxford University Press, Oxford

    Google Scholar 

  41. Pleštil J, Ostanevich YuM, Borbely S, Stejskal J, Ilavský M (1987) 17: 465

    Google Scholar 

  42. Hooper HH, Baker JP, Blanch HW, Prausnitz JM (1990) Macromolecules 23: 1096

    Google Scholar 

  43. Tsong-Piu H, Dong SM, Cohen C (1983) Polymer 24: 1273

    Google Scholar 

  44. Hrouz J, Ilavský M, Ulbrich K, Kopeček J (1981) Eur Polym J 17: 361

    Google Scholar 

  45. Sedláková Z, Bouchal K, Hrouz J, Ilavský M (1992) Polym Bull in press

    Google Scholar 

  46. Marchetti M, Prager S, Cussler EI (1990) Macromolecules 23: 3445

    Google Scholar 

  47. Hirokawa Y, Tanaka T, Sato E (1985) Macromolecules 18: 2782

    Google Scholar 

  48. Ilavský M, Bouchal K (1988) In: Kramer O (ed) Biological and synthetic polymer networks. Elsevier, New York, p 435

    Google Scholar 

  49. Ilavský M, Bouchal K, Hrouz J (1990) Polym Bull 24: 619

    Google Scholar 

  50. Treloar LRG (1958) The physics of rubber elasticity. Clarendon, Oxford

    Google Scholar 

  51. Ilavský M (1973) Collect Czech Chem Commun 38: 1771

    Google Scholar 

  52. Ilavský M, Hasa J, Dušek K (1975) J Polym Sci Polym Symp C 53: 239

    Google Scholar 

  53. Ilavský M, Saiz E, Riande E (1989) J Polym Sci Polym Phys 27: 743

    Google Scholar 

  54. Debye P (1947) J Phys Colloid Chem 1: 18

    Google Scholar 

  55. Porod G (1951) Kolloid-Z 125: 21

    Google Scholar 

  56. Tanaka T, Sato E, Hirokawa Y, Hirotsu S, Peetermans J (1985) Phys Rev Lett 55: 2455

    Google Scholar 

  57. Gehrke SH, Cussler EL (1988) Chem Eng Sci 43: 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Dušek

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Ilavský, M. (1993). Effect of phase transition on swelling and mechanical behavior of synthetic hydrogels. In: Dušek, K. (eds) Responsive Gels: Volume Transitions I. Advances in Polymer Science, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56791-7_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-56791-7_4

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56791-2

  • Online ISBN: 978-3-540-47737-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics