Skip to main content

Greedy triangulation approximates the optimum and can be implemented in linear time in the average case

  • Algorithms And Complexity
  • Conference paper
  • First Online:
Advances in Computing and Information — ICCI '91 (ICCI 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 497))

Included in the following conference series:

Abstract

Let S be a set of n points uniformly distributed in a unit square. We show that the expected value of the ratio between the length of the greedy triangulation of S and the minimum weight triangulation of S is constantly bounded. Our main result is an algorithm for constructing the greedy triangulation of S which runs in linear expected-time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aggarwal, Research topics in computational geometry, Bulletin of EATCS 39 (October 1989), pp. 388–408.

    Google Scholar 

  2. A. Aggarwal, L. Guibas, J. Saxe, P. Shor, A Linear Time Algorithm for Computing the Voronoi Diagram of a Convex Polygon, in: “Proc. of the 19th ACM Symposium on Theory of Computing, New York”, pp. 39–45, 1987.

    Google Scholar 

  3. J.L. Bentley, B.W. Weide, A.C. Yao, Optimal expected-time algorithms for closest point problems, ACM Transactions on Mathematical Software 6, pp. 563–580.

    Google Scholar 

  4. R.C. Chang and R.C.T. Lee, On the average length of Delaunay triangulations, BIT 24, pp. 269–273.

    Google Scholar 

  5. D. Johnson, Local Optimization and the Traveling Salesman Problem, in “Proc. ICALP'90, Warwick”, LNCS 443, Springer Verlag, pp. 446–462.

    Google Scholar 

  6. D.G. Kirkpatrick, A Note on Delaunay and Optimal Triangulations, IPL, Vol. 10, No. 3, pp. 127–131.

    Google Scholar 

  7. C. Levcopoulos, An Ω(√n) lower bound for non-optimality of the greedy triangulation, Information Processing Letters 25 (1987), pp. 247–251.

    MathSciNet  Google Scholar 

  8. C. Levcopoulos, J. Katajainen and A. Lingas, An Optimal Expected-time Parallel Algorithm for Voronoi Diagrams, in “Proc. 1st Scandinavian Workshop on Algorithm Theory, Halmstad 88”, LNCS 318, pp. 190–199.

    Google Scholar 

  9. D.T. Lee and A. Lin, Generalized Delaunay Triangulation for Planar Graphs, Discrete and Computational Geometry 1(1986), Springer Verlag, pp. 201–217.

    Google Scholar 

  10. C. Levcopoulos and A. Lingas, On approximation behavior of the greedy triangulation for convex polygons, Algorithmica 2, 1987, pp. 175–193.

    Article  Google Scholar 

  11. C. Levcopoulos and A. Lingas, Fast Algorithms for Greedy Triangulation, in “Proc. 2nd Scandinavian Workshop on Algorithm Theory, Bergen 90”, LNCS 447, pp. 238–250.

    Google Scholar 

  12. A. Lingas, The Greedy and Delaunay triangulations are not bad in the average case, IPL 22(86) pp. 25–31.

    Google Scholar 

  13. A. Lingas, Greedy triangulation can be efficiently implemented in the average case, in “Proc. International Workshop WG'88, Amsterdam”, LNCS 344, Springer Verlag, pp. 253–261.

    Google Scholar 

  14. A. Lingas, Voronoi Diagrams with Barriers and their Applications, Information Processing Letters 32(1989), pp. 191–198.

    Article  Google Scholar 

  15. E.L. Lloyd, On Triangulations of a Set of Points in the Plane, in: “Proc. of the 18th Annual IEEE Conference on the Foundations of Computer Science, Providence”, 1977.

    Google Scholar 

  16. G. Manacher and A. Zobrist, Neither the greedy nor the Delaunay triangulation of a planar point set approximates the optimal triangulation, Information Processing Letters 9 (1979).

    Google Scholar 

  17. D.A. Plaisted and J. Hong, A heuristic triangulation algorithm, J. Algorithms 8 (1987), pp. 405–437.

    Article  Google Scholar 

  18. F.P. Preparata and M.I. Shamos, “Computational Geometry, An Introduction”, Texts and Monographs in Computer Science, Springer Verlag, New York, 1985.

    Google Scholar 

  19. C. Wang and L. Schubert, An optimal algorithm for constructing the Delaunay triangulation of a set of line segments, in: “Proc of the 3rd ACM Symposium on Computational Geometry, Waterloo”, pp. 223–232, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Frantisek Fiala Waldemar W. Koczkodaj

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Levcopoulos, C., Lingas, A. (1991). Greedy triangulation approximates the optimum and can be implemented in linear time in the average case. In: Dehne, F., Fiala, F., Koczkodaj, W.W. (eds) Advances in Computing and Information — ICCI '91. ICCI 1991. Lecture Notes in Computer Science, vol 497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54029-6_163

Download citation

  • DOI: https://doi.org/10.1007/3-540-54029-6_163

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54029-8

  • Online ISBN: 978-3-540-47359-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics