Skip to main content

Axonal Transport: Imaging and Modeling of a Neuronal Process

  • Chapter
Controlled Nanoscale Motion

Part of the book series: Lecture Notes in Physics ((LNP,volume 711))

Abstract

Owing to their unusual geometry and polarity, neurons face a tremendous transport challenge. In particular, the bi-directional movement of many cargoes between cell body and synapse that takes place within extremely long, narrow axons requires motor-driven active transport along polarized microtubules. We summarize some imaging and theoretical modeling strategies recently developed to better understand axonal transport and neuronal function. Our approaches are motivated by three questions: (1) Can we predict the response of a complex trafficking system to perturbations of various components, either alone, or in combination? (2) What is the relationship between in vitro measurements of single motor properties and the movement of motor-cargo complexes in vivo? (3) What key principles govern the operation of the neuronal transport system? We discuss the imaging of vesicular transport in Drosophila melanogaster larval axons, and the development of quantitative schemes to define transport function via the extraction of kinematic parameters from these images. The application of these schemes to images from wild-type larvae and larvae expressing mutations in specific transport proteins allows rigorous quantification of transport kinematics in functional and dysfunctional neurons. Finally, we present some strategies and results for the theoretical modeling of axonal transport, and discuss the integration of these results with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.M. Coppin, J.T. Finer, J.A. Spudich, R.D. Vale (1996). Detection of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy. Proc Natl Acad Sci USA, 93(5), pp. 1913–7.

    Article  ADS  Google Scholar 

  2. J. Howard, A.J. Hudspeth, R.D. Vale (1989). Movement of microtubules by single kinesin molecules. Nature, 342(6246), pp. 154–8.

    Article  ADS  Google Scholar 

  3. K. Kawaguchi, S. Ishiwata (2000). Temperature dependence of force, velocity, and processivity of single kinesin molecules. Biochem Biophys Res Commun, 272(4.3), pp. 895–9.

    Article  Google Scholar 

  4. S.C. Kuo, M.P. Sheetz (1993). Force of single kinesin molecules measured with optical tweezers. Science, 260(5105), pp. 232–4.

    Article  ADS  Google Scholar 

  5. R. Mallik, B.C. Carter, S.A. Lex, S.J. King, S.P. Gross (2004). Cytoplasmic dynein functions as a gear in response to load. Nature, 427(6975), pp. 649–52.

    Article  ADS  Google Scholar 

  6. R.D. Vale (1993). Measuring single protein motors at work. Science, 260(5105), pp. 169–70.

    Article  ADS  Google Scholar 

  7. R.D. Vale, F. Malik, D. Brown (1992). Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motor proteins. J Cell Biol, 119(6), pp. 1589–96.

    Article  Google Scholar 

  8. R.D. Allen, J. Metuzals, I. Tasaki, S.T. Brady, S.P. Gilbert (1982). Fast axonal transport in squid giant axon. Science, 218(4577), pp. 1127–9.

    Article  Google Scholar 

  9. L. Wang, A. Brown (2001). Rapid intermittent movement of axonal neurofilaments observed by fluorescence photobleaching. Mol Biol Cell, 12(10), pp. 3257–67.

    Google Scholar 

  10. S.T. Brady, R.J. Lasek, R.D. Allen (1982). Fast axonal transport in extruded axoplasm from squid giant axon. Science, 218(4577), pp. 1129–31.

    Article  ADS  Google Scholar 

  11. B.W. Guzik, L.S. Goldstein (2004). Microtubule-dependent transport in neurons: steps towards an understanding of regulation, function and dysfunction. Curr Opin Cell Biol, 16(4), pp. 443–50.

    Article  Google Scholar 

  12. N. Hirokawa, R. Takemura (2005). Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci, 6(4.3), pp. 201–14.

    Article  Google Scholar 

  13. V. Muresan (2000). One axon, many kinesins: What’s the logic? J Neurocytol, 29(11–12), pp. 799–818.

    Article  MathSciNet  Google Scholar 

  14. A.B. Bowman, A. Kamal, B.W. Ritchings, A.V. Philp, M. McGrail, J.G. Gindhart, L.S Goldstein (2000). Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell, 103(4), pp. 583–94.

    Article  Google Scholar 

  15. K.J. Verhey, D. Meyer, R. Deehan, J. Blenis, B.J. Schnapp, T.A. Rapoport, B. Margolis (2001). Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol, 152(5), pp. 959–70.

    Article  Google Scholar 

  16. R. Cross, J. Scholey (1999). Kinesin: the tail unfolds. Nat Cell Biol, 1(5), pp. E119–2.

    Article  Google Scholar 

  17. D.D. Hackney, J.D. Levitt, J. Suhan (1992). Kinesin undergoes a 9 S to 6 S conformational transition. J Biol Chem, 267(12), pp. 8696–701.

    Google Scholar 

  18. S.J. King, T.A. Schroer (2000). Dynactin increases the processivity of the cytoplasmic dynein motor. Nat Cell Biol, 2(4.1), pp. 20–4.

    Google Scholar 

  19. A.W. Tai, J.Z. Chuang, C.H. Sung (2001). Cytoplasmic dynein regulation by subunit heterogeneity and its role in apical transport. J Cell Biol, 153(7), pp. 1499–509.

    Article  Google Scholar 

  20. N. Hirokawa, R. Takemura (2003). Biochemical and molecular characterization of diseases linked to motor proteins. Trends Biochem Sci, 28(10), pp. 558–65.

    Article  Google Scholar 

  21. S. Roy, B. Zhang, V.M. Lee, J.Q. Trojanowski (2005). Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol (Berl), 109(4.1), pp. 5–13.

    Article  Google Scholar 

  22. S. Gunawardena, L.S. Goldstein (2004). Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J Neurobiol, 58(4.2), pp. 258–71.

    Article  Google Scholar 

  23. A.B. Cubitt R. Heim, S.R. Adams A.E. Boyd L.A. Gross R.Y. Tsien (1995). Understanding, improving and using green fluorescent proteins. Trends Biochem Sci, 20(11), pp. 448–55.

    Article  Google Scholar 

  24. M.M. Falk, U. Lauf (2001). High resolution, fluorescence deconvolution microscopy and tagging with the autofluorescent tracers CFP, GFP, and YFP to study the structural composition of gap junctions in living cells. Microsc Res Tech, 52(4.3), pp. 251–62.

    Article  Google Scholar 

  25. C. Kaether, P. Skehel, C.G. Dotti (2000). Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. Mol Biol Cell, 11(4), pp. 1213–24.

    Google Scholar 

  26. A. Kamal, G.B. Stokin, Z. Yang, C.H. Xia, L.S. Goldstein (2000). Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron, 28(4.2), pp. 449–59.

    Article  Google Scholar 

  27. G.B. Stokin, C. Lillo, T.L. Falzone, R.G. Brusch, E. Rockenstein, S.L. Mount, R. Raman, P. Davies, E. Masliah, D.S. Williams, L.S. Goldstein (2005). Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science, 307(5713), pp. 1282–8.

    Article  ADS  Google Scholar 

  28. S. Gunawardena, L.S. Her, R.G. Brusch, R.A. Laymon, I.R. Niesman, B. Gordesky-Gold, L. Sintasath, N.M. Bonini, L.S. Goldstein (2003). Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron, 40(4.1), pp. 25–40.

    Article  Google Scholar 

  29. H.M. Zhou, I. Brust-Mascher J.M. Scholey (2001). Direct visualization of the movement of the monomeric axonal transport motor UNC-104 along neuronal processes in living Caenorhabditis elegans. J Neurosci, 21(11), pp. 3749–55.

    Google Scholar 

  30. G. Yang, A. Matov, G. Danuser (2005). Reliable Tracking of Large Scale Dense Antiparallel Particle Motion for Fluorescent Live Cell Imaging, in Proc. IEEE Workshop on Computer Vision Methods for Bioinformatics at CVPR., San Diego, CA, USA.

    Google Scholar 

  31. A. Ponti, P. Vallotton, W.C. Salmon, C.M. Waterman-Storer, G. Danuser (2003). Computational analysis of F-actin turnover in cortical actin meshworks using fluorescent speckle microscopy. Biophys J, 84(5), pp. 3336–52.

    Article  Google Scholar 

  32. J-C. Olivo-Marin (2002). Extraction of spots in biological images using multiscale products. Pattern Recognition, 35, pp. 1989–1996.

    Article  MATH  Google Scholar 

  33. S.P. Gross, M.A. Welte, S.M. Block E.F. Wieschaus (2002). Coordination of opposite-polarity microtubule motors. J Cell Biol, 156(4), pp. 715–24.

    Article  Google Scholar 

  34. A. Friedman, G. Craciun (2005). A model of intracellular transport of particles in an axon. J Math Biol, 51(4.2), pp. 217–46.

    Article  MATH  MathSciNet  Google Scholar 

  35. J. Hoffman (1992). Numerical methods for engineers and scientists., McGraw-Hill, Inc.

    Google Scholar 

  36. W. Hundsdorfer, J.G. Verwer (2003). Numerical solution of time-dependent advection-diffusion-reaction equations., Springer.

    Google Scholar 

  37. D.A. Smith and R.M. Simmons (2001). Models of Motor-Assisted Transport of Intracellular Particles. Biophys J, 80(1) pp. 45–68.

    Article  MathSciNet  Google Scholar 

  38. M. Badoual, F. Jülicher, J. Prost (2002). Bidirectional Cooperative Motion of Molecular Motors. Proc Natl Acad Sci, 99(10), pp. 6696–6701.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Shah, S., Yang, G., Danuser, G., Goldstein, L. (2007). Axonal Transport: Imaging and Modeling of a Neuronal Process. In: Linke, H., MÃ¥nsson, A. (eds) Controlled Nanoscale Motion. Lecture Notes in Physics, vol 711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49522-3_4

Download citation

Publish with us

Policies and ethics