Skip to main content

On the mechanism of solvation forces

  • Conference paper
  • First Online:
Trends in Colloid and Interface Science XIII

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 112))

Abstract

The generally observed experimental features of solvation forces were considered. It was shown that the phonon mechanism of long range surface forces can be applied directly to explain solvation forces. In terms of this mechanism, the oscillations of interaction forces arise due to spatial dispersion; they result in oscillations of collective vibration states density varying with film thickness. The peculiarities of solvation forces revealed in different systems and the correlation between oscillation parameters and the characteristics of interacting media have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horn RG, Israelachvili JN (1981) J Chem Phys 75:1400

    Article  CAS  Google Scholar 

  2. Nikolov AD, Wasan TD (1989) J Colloid Interface Sci 133:1

    Article  CAS  Google Scholar 

  3. Wasan TD, Nikolov AD, Kralchevsky PA, Ivanov IB (1992) Coll Surf 67:139

    Article  CAS  Google Scholar 

  4. Bergeron V, Radke CJ (1992) Langmuir 8:3020

    Article  CAS  Google Scholar 

  5. Bergeron V, Jimenez-Laguna AJ, Radke CJ (1992) Langmuir 8:3027

    Article  CAS  Google Scholar 

  6. Christenson HK (1984) Ph.D. thesis, Australian National University

    Google Scholar 

  7. Christenson HK (1983) J Chem Phys 78:6906

    Article  CAS  Google Scholar 

  8. Christenson HK, Horn RG, Israelachvili JN (1982) J Colloid Interface Sci 88:79

    Article  CAS  Google Scholar 

  9. Christenson HK, Gruen DWR, Horn RG, Israelachvili JN (1987) J Chem Phys 87:1834

    Article  CAS  Google Scholar 

  10. Israelachvili JN (1986) J Colloid Interface Sci 110:263

    Article  CAS  Google Scholar 

  11. Israelachvili JN, Kott SJ, Gee ML, Witten TA (1989) Macromolecules 22:4247

    Article  CAS  Google Scholar 

  12. Christenson HK, Horn RG (1983) Chem Phys Let 98:45

    Article  CAS  Google Scholar 

  13. Christenson HK (1984) J Chem Soc Faraday Trans 1 80:1933

    Google Scholar 

  14. Christenson HK, Horn RG (1985) Chem Scr 25:37

    CAS  Google Scholar 

  15. Horn RG, Israelachvili JN, Perez E (1981) J Phys 42:39

    CAS  Google Scholar 

  16. Pashley RM, Israelachvili JN (1984) J Colloid Interface Sci 101:511

    Article  CAS  Google Scholar 

  17. McGuiggan PM, Pashley RM (1989) J Phys Chem 93:y6171

    Article  Google Scholar 

  18. Pashley RM, Israelachvili JN (1984) J Colloid Interface Sci 97:446

    Article  CAS  Google Scholar 

  19. Christenson HK (1988) J Dispersion Sci Technol 9:171

    Article  CAS  Google Scholar 

  20. Israelachvili JN (1985) Chem Scr 25:7

    CAS  Google Scholar 

  21. Israelachvili JN (1987) In: Safran SA, Clark NA (eds) Physics of complex and supermolecular fluids. Wiley, New York, p. 101

    Google Scholar 

  22. Israelachvili JN (1987) Acc Chem Res 20:415

    Article  CAS  Google Scholar 

  23. Christenson HK (1986) J Phys Chem 90:4

    Article  CAS  Google Scholar 

  24. Tarazona P, Evans R (1984) Mol Phys 52:847

    Article  CAS  Google Scholar 

  25. Mitchell DJ, Ninham BW, Pailthorpe BA (1978) J Chem Soc Faraday Trans II 74:1116

    Article  CAS  Google Scholar 

  26. Henderson D (1988) J Colloid Interface Sci 121:486

    Article  CAS  Google Scholar 

  27. Kjellander R, Sarman S (1988) Chem Phys Lett 149:102

    Article  CAS  Google Scholar 

  28. Attard P, Parker JL (1992) J Phys Chem 96:5086

    Article  CAS  Google Scholar 

  29. Zhu SB, Robinson GW (1991) J Chem Phys 94:1403

    Article  CAS  Google Scholar 

  30. Snook IK, van Megen W (1980) J Chem Phys 72:2907

    Article  CAS  Google Scholar 

  31. Karlstrom G (1985) Chem Scr 25:89

    Google Scholar 

  32. Boinovich LB, Emelyanenko AM (1992) Z Phys Chem 178:229

    Google Scholar 

  33. Emelyanenko AM, Boinovich LB (1994) Colloid J 56:299

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Boinovich .

Editor information

Durdica Težak Mladen Martinis

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Boinovich, L.B., Emelyanenko, A.M. (1999). On the mechanism of solvation forces. In: Težak, D., Martinis, M. (eds) Trends in Colloid and Interface Science XIII. Progress in Colloid and Polymer Science, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48953-3_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-48953-3_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65810-8

  • Online ISBN: 978-3-540-48953-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics