Skip to main content

Parallel Patient-Specific Computational Haemodynamics

  • Conference paper
  • First Online:
Applied Parallel Computing (PARA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2367))

Included in the following conference series:

Abstract

A methodology for the prediction of patient-specific bloodflow (haemodynamics) is presented. All aspects required for such predictions: image processing and segmentation, surface extraction, problem definition, grid generation, coupled fluid/structure solution, as well as visualization and data reduction are considered. Emphasis is placed on fast execution on parallel machines, particularly those with shared memory architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Barequet, D. Shapiro and A. Tal-History Consideration in Reconstructing Polyhedral Surfaces from Parallel Slices; Proc. IEEE Visualization’96, San Francisco, 149–156 (1996).

    Google Scholar 

  2. J.D. Baum, H. Luo, R. Löhner, C. Yang, D. Pelessone and C. Charman-A Coupled Fluid/Structure Modeling of Shock Interaction with a Truck; AIAA-96-0795 (1996).

    Google Scholar 

  3. V. Burdin and C. Roux-Surface Segmentation of Long Bone Structures from CT Images using a Deformable Contour Model; Proc. of 16th Annual Int. Conf. IEEE Eng. in Medicine and Biology Society, Nov. 3–6, Baltimore (1994).

    Google Scholar 

  4. J.R. Cebral and R. Löhner-Conservative Load Projection and Tracking for Fluid-Structure Problems; AIAA J. 35,4, 687–692 (1997a).

    Article  MATH  Google Scholar 

  5. J.R. Cebral and R. Löhner-Fluid-Structure Coupling: Extensions and Improvements; (1997b).

    Google Scholar 

  6. J. Cebral and R. Löhner-Advances in Visualization: Distribution and Collaboration; (1999).

    Google Scholar 

  7. J. Cebral and R. Löhner-From Medical Images to CFD Meshes; Proc. 8th Int. Meshing Roundtable, South Lake Tahoe, October (1999).

    Google Scholar 

  8. J.R. Cebral and R. Löhner-Automatic Grid Generation for Anatomically Accurate Computational Hemodynamics Calculations; Proc. ICMMB-11, April 2–5, Hawaii (2000).

    Google Scholar 

  9. J.R. Cebral and R. Löhner-Image-Based Computational Hemodynamics; Proc. World Congress in Medical Physics and Biomedical Engineering, Chicago, Illinois, July 23–28 (2000).

    Google Scholar 

  10. J.R. Cebral, R. Löhner and J. Burgess-Computer Simulation of Cerebral Artery Clipping: Relevance to Aneurysm Neuro-Surgery Planning; Proc. of ECCOMAS 2000 Conf., Barcelona, Spain, September (2000).

    Google Scholar 

  11. J. Cebral and R. Löhner-Flow Visualization on Unstructured Grids Using Geometrical Cuts, Vortex Detection and Shock Surfaces; AIAA-01-0915 (2001).

    Google Scholar 

  12. J.R. Cebral and R. Löhner-From Medical Images to Anatomically Accurate Finite Element Grids; Int. J. Num. Meth. Eng. 51, 985–1008 (2001).

    Article  Google Scholar 

  13. J.R. Cebral, R. Löhner, P.L. Choyke and P.J. Yim-Merging of Intersecting Triangulations for Finite Element Modeling; J. of Biomechanics 34, 815–819 (2001).

    Article  Google Scholar 

  14. J.R. Cebral, P.J. Yim, R. Löhner, O. Soto, H. Marcos and P.L. Choyke-New Methods for Computational Fluid Dynamics of Carotid Artery From Magnetic Resosnance Angiography; Proc. SPIE Medical Imaging, Vol. 4321, Paper No. 22, San Diego, California, February (2001).

    Google Scholar 

  15. A.M. Dale, B. Fischl and M.I. Sereno-Cortical Surface-Based Analysis I: Segmentation and Surface Reconstruction; NeuroImage, 9(2), 179–194 (1999).

    Article  Google Scholar 

  16. M. Fortin and F. Thomasset-Mixed Finite Element Methods for Incompressible Flow Problems; J. Phys. 31, 113–145 (1979).

    MathSciNet  MATH  Google Scholar 

  17. L.P. Franca, T. J.R. Hughes, A.F.D. Loula and I. Miranda-A New Family of Stable Elements for the Stokes Problem Based on a Mixed Galerkin/Least-Squares Finite Element Formulation; pp. 1067–1074 in Proc. 7th Int. Conf. Finite Elements in Flow Problems (T.J. Chung and G. Karr eds.), Huntsville, AL (1989).

    Google Scholar 

  18. L.P. Franca and S.L. Frey-Stabilized Finite Element Methods: II. The incompressible Navier-Stokes Equations; Meth. Appl. Mech. Eng. 99, 209–233 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  19. P.J. Frey and H. Borouchaki,-Surface Mesh Evaluation; Proc. 6th Int. Meshing Roundtable, October 13–15, Park City, Utah (1997).

    Google Scholar 

  20. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle-Mesh Optimization; SIGGRAPH 93 Proceedings, 19–26 (1993).

    Google Scholar 

  21. T.N. Jones and D. Metaxas,-Automated 3D Segmentation Using Deformable Models and Fuzzy Affinity; Lecture Notes in Computer Sciences, V. 1230, Springer-Verlag (1997).

    Google Scholar 

  22. Y. Kawata, N. Niki and T. Kumazaki,-Computer-Assisted Analysis and 3D Visualization of Blood Vessels Based on Cone-Bean CT Images; Lecture Notes in Computer Science, V. 1024, 355–362 (1995).

    Google Scholar 

  23. R. Klette and P. Zamperoni-Handbook of Image Processing Operators; John Wiley & Sons, New York (1996).

    Google Scholar 

  24. H.M. Ladak, J.B. Thomas, J.R. Mitchell, B.K. Rutt and D.A. Steinman-A Semi-Automatic Technique for Measurement of Arterial Wall From Black Blood MRI; Med. Phys., In Press.

    Google Scholar 

  25. C.T. Lee, R.L. Kashyap and C.N. Chu-Building Skeleton Models Via 3D Medial Surface/Axis Thinning Algorithms; Graphical Models and Image Processing, 56, 462–478 (1994).

    Article  Google Scholar 

  26. M. Lesoinne and Ch. Farhat-Geometric Conservation Laws for Flow Problems With Moving Boundaries and Deformable Meshes, and Their Impact on Aeroelastic Computations; Meth. Appl. Mech. Eng. 134, 71–90 (1996).

    Article  MATH  Google Scholar 

  27. R. Löhner-Robust, Vectorized Search Algorithms for Interpolation on Unstructured Grids; J. Phys. 118, 380–387 (1995).

    Google Scholar 

  28. R. Löhner-Regridding Surface Triangulations; J. Phys. 126, 1–10 (1996).

    Google Scholar 

  29. R. Löhner-Extensions and Improvements of the Advancing Front Grid Generation Technique; Comm. Num. Meth. Eng. 12, 683–702 (1996).

    Article  Google Scholar 

  30. R. Löhner-Renumbering Strategies for Unstructured-Grid Solvers Operating on Shared-Memory, Cache-Based Parallel Machines; Meth. Appl. Mech. Eng. 163, 95–109 (1998).

    Article  Google Scholar 

  31. R. Löhner, Chi Yang, E. Oñate and S. Idelssohn-An Unstructured Grid-Based, Parallel Free Surface Solver; Appl. Num. Math. 31, 271–293 (1999).

    Article  MATH  Google Scholar 

  32. R. Löhner-Advances in Unstructured Grid Generation; Proc. of EC COMAS 2000 Conf., Barcelona, Spain, September (2000).

    Google Scholar 

  33. R. Löhner, Chi Yang, J. Cebral, O. Soto, F. Camelli, J.D. Baum, H. Luo, E. Mestreau, D. Sharov, R. Ramamurti, W. Sandberg and Ch. Oh-Advances in FEFLO; (2001).

    Google Scholar 

  34. R. Löhner and M. Galle-Minimization of Indirect Addressing for Edge-Based Field Solvers; (2002).

    Google Scholar 

  35. H. Luo, J.D. Baum and R. Löhner-Edge-Based Finite Element Scheme for the Euler Equations; AIAA J. 32,6, 1183–1190 (1994).

    Article  MATH  Google Scholar 

  36. H. Luo, J.D. Baum and R. Löhner-A Fast, Matrix-Free Implicit Method for Compressible Flows on Unstructured Grids; J. Phys. 146, 664–690 (1998).

    MATH  Google Scholar 

  37. H. Luo, J.D. Baum and R. Löhner-An Accurate, Fast, Matrix-Free Implicit Method for Computing Unstready Flows on Unstructured Grids; and Fluids 30, 137–159 (2001).

    Article  MATH  Google Scholar 

  38. N. Maman and C. Farhat-Matching Fluid and Structure Meshes for Aeroelastic Computations: A Parallel Approach; Computers and Structures 54,4, 779–785 (1995).

    Article  Google Scholar 

  39. Y. Masutani, K. Masamune and T. Dohi,-Region-Growing Based Feature Detection Algorithm for Tree-Like Objects; Lecture Notes in Computer Science, V. 1131, 161–172 (1996).

    Google Scholar 

  40. D. Mavriplis-A Unified Multigrid Solver for the Navier-Stokes Equations on Unstructured Meshes; (1995).

    Google Scholar 

  41. D. Mavriplis-A 3-D Agglomeration Multigrid Solver for the Reynolds-Averaged Navier-Stokes Equations on Unstructured Meshes; Int. J. Num. Meth. Fluids 23, 527–544 (1996).

    Article  Google Scholar 

  42. J.A. Moore, D.A. Steinman, D.W. Holdsworth and C.R. Ethier-Accuracy of Computational Hemodynamics in Complex Arterial Geometries Reconstructed from Magnetic Resonance Imaging; Annals of Biomed. Eng. 27, 32–41 (1999).

    Article  Google Scholar 

  43. K. Perktold and G. Rappitsch-Computer Simulation of Arterial Blood Flow. Vessels Diseases Under the Aspect of Local Hemodynamics; pp. 83–114 in Biological Flows (M.Y. Jaffrin and C. Caro eds.), Plenum Press (1995).

    Google Scholar 

  44. A. Quarteroni, M. Tuveri and A. Veneziani-Computational Vascular Fluid Dynamics: Problems, Models and Methods; Rep. EPFL/DMA 11.98 (1998).

    Google Scholar 

  45. Y. Saad and M.H. Schultz-GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems; Siam J. Sci. Stat. 7,3, 856–869 (1986).

    Article  MathSciNet  Google Scholar 

  46. Y. Saad,-Krylov Subspace Methods on Supercomputers; Siam J. Sci. Stat. 10,6, 1200–1232 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  47. G. Taubin-A Signal Processing Approach to Fair Surface Design; Computer Graphics Proceedings, 351–358 (1995).

    Google Scholar 

  48. C. Taylor and P. Hood-A Numerical Solution of the Navier-Stokes Equations Using the Finite Element Method. Fluids 1, 73–100 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  49. C.A. Taylor, T.J.R. Hughes and C.K. Zarins-Finite Element Modeling of Blood Flow in Arteries; Meth. Appl. Mech. Eng. 158, 155–196 (1998).

    Article  MathSciNet  Google Scholar 

  50. T.E. Tezduyar, R. Shih, S. Mittal and S.E. Ray-Incompressible Flow Computations With Stabilized Bilinear and Linear Equal-Order Interpolation Velocity-Pressure Elements; UMSI Rep. 90 (1990).

    Google Scholar 

  51. P.J. Yim, R. Mullick, R.M. Summers, H. Marcos, J.R. Cebral, R. Löhner and P.L. Choyke-Measurement of Stenosis from Magnetic Resonance Angiography Using Vessel Skeletons; Proc. of SPIE, Vol 3978, p245–255, (2000).

    Article  Google Scholar 

  52. B.C. Vemuri, Y. Guo, S.H. Lai and C.M. Leonard,-Fast Algorithms for Fitting Multiresolution Hybrid Shape Models to Brain MRI; Lecture Notes in Computer Science, V. 1131, 213–222 (1996).

    Google Scholar 

  53. V. Venkatakrishnan-Newton Solution of Inviscid and Viscous Problems; AIAA-88-0413 (1988).

    Google Scholar 

  54. L.B. Wigton, N.J. Yu and D.P. Young-GMRES Acceleration of Computational Fluid Dynamics Codes; (1985).

    Google Scholar 

  55. D.L. Wilson and J.A. Noble-Segmentation of Cerebral Vessels and Aneurysms from MR Agiographic Data; Lecture Notes in Computer Science, V. 1230, 423–428 (1997).

    MATH  Google Scholar 

  56. J.R. Womersley-Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known; J. Physiol. 127, 553–563 (1955).

    MATH  Google Scholar 

  57. O. Yim and R.M. Summers-Analytic Surface Reconstruction by Local Threshold Estimation in the Case of Simple Intensity Contrasts; Proc. SPIE Medical Imaging, Vol. 3660, 288–300 (1999).

    Article  Google Scholar 

  58. S.Z. Zhao, X.Y. Xu, A.D. Hughes S.A. Thom, A.V. Stanton, B. Ariff and Q. Long-Blood Flow and Vessel Mechanics in a Physiologically Realistic Model of a Human Carotid Arterial Bifurcation; J. Biomech. 33, 975–984 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cebral, J., Löhner, R., Choyke, P.L., Yim, P.J. (2002). Parallel Patient-Specific Computational Haemodynamics. In: Fagerholm, J., Haataja, J., Järvinen, J., Lyly, M., Råback, P., Savolainen, V. (eds) Applied Parallel Computing. PARA 2002. Lecture Notes in Computer Science, vol 2367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48051-X_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-48051-X_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43786-4

  • Online ISBN: 978-3-540-48051-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics