Skip to main content

Simulation of Anisotropic Propagation in the Myocardium with a Hybrid Bidomain Model

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2230))

Abstract

We describe simulations of propagated electrical excitation in threedimensional anisotropic myocardial muscle. According to the bidomain theory, anisotropic electrical conductivities are presented as tensors in the intracellular and interstitial domains (D i and D e, respectively). Under the assumption of equal anisotropy ratio (D i = kD e), subthreshold behaviour of the excitable elements is governed by a parabolic reaction-diffusion equation for the membrane potential, solvable even on a desktop computer. In the case of more general anisotropies (D ikD e), also the interstitial potential needs to be solved simultaneously from an elliptic partial differential equation, requiring a supercomputer for large arrays of excitable elements. In both cases, the elements obey cellular automata rules in the suprathreshold state.We present preliminary results of the propagated excitation for different anisotropy ratios in a three-dimensional slab geometry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.J. Ritsema van Eck, “Digital-computer simulation of cardiac excitation and repolarization in man”. PhD thesis, Dalhousie University, Halifax, Canada, 1972.

    Google Scholar 

  2. L. Tung. A bidomain model for describing ischemic myocardial d-c potentials. PhD thesis, Massachusetts Institute of Technology, 1978.

    Google Scholar 

  3. W.T. Miller III and D.B. Geselowitz. Simulation studies of the electrocardiogram: I. The normal heart. Circ Res, 43: 301–315, 1978.

    Google Scholar 

  4. L.J. Leon and B.M. Horáček. Computer model of excitation and recovery in the anisotropic myocardium. J Electrocardiol, 24: 1–41, 1991.

    Article  Google Scholar 

  5. J. Nenonen, J.A. Edens, L.J. Leon, and B.M. Horáček. Computer model of propagated excitation in the anisotropic human heart: I. Implementation and algorithms. In Computers in Cardiology, pages 545–548, IEEE Computer Society Press, Los Alamitos, CA, 1992.

    Google Scholar 

  6. B.M. Horáček, J. Nenonen, J.A. Edens, and L.J. Leon. Ahybrid computer model of propagated excitation in the anisotropic human ventricular myocardium. In: Biomedical and Life Physics, D.N. Ghista, ed. (Viewer Verlag, Wiesbaden, 1996), pp. 181–190.

    Google Scholar 

  7. D.B. Geselowitz and W.T. Miller III. A bidomain model for anisotropic cardiac muscle. Ann. Biomed. Eng., 11: 191–206, 1983.

    Article  Google Scholar 

  8. P. Colli Franzone, L. Guerri, and S. Tentoni. Mathematical modelling of the excitation process in myocardial tissue: influence of fiber rotation on wavefront propagation and potential field. Math. Biosci., 101: 155–235, 1990.

    Article  MATH  Google Scholar 

  9. R. Plonsey. Bioelectric Phenomena. McGraw-Hill, NewYork, 1969.

    Google Scholar 

  10. R. Plonsey and R.C. Barr. Current flow patterns in two-dimensional anisotropic bisyncytia with normal and extreme conductivities. Biophys J, 45: 557–571, 1984.

    Article  Google Scholar 

  11. J.J.B. Jack, D. Noble, and R.W. Tsien. Electric Current Flow in Excitable Cells. Clarendon Press, Oxford, 1975.

    Google Scholar 

  12. R. Hren, J. Nenonen, and B.M. Horacek, “Simulated epicardial potential maps during paced activation reflect myocardial fibrous structure”. Ann Biomed Eng 26: 1022–1035, 1998.

    Article  Google Scholar 

  13. K. Simelius, J. Nenonen, and B.M. Horáček. Bidomain simulations of cardiac activation with large elements. Submitted.

    Google Scholar 

  14. C.H. Luo and Y. Rudy. A dynamic model of the cardiac ventricular action potential I. Simulations of ionic currents and concentration changes. Circ. Res., 74: 1071–1096, 1994.

    Google Scholar 

  15. B. Roth. Action potential propagation in a thick strand of cardiac muscle. Circ. Res., 68: 162–173, 1991.

    Google Scholar 

  16. C.S. Henriquez, A.L. Muzikant, and C.K. Smoak. Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: Simulations in a three-dimensional bidomain model. J. Cardiovasc. Electrophys., 7: 424–444, 1996.

    Article  Google Scholar 

  17. B.J. Roth. Electrical conductivity values used with the bidomain model of cardiac tissue. IEEE Trans. Biomed. Eng., 44: 326–328, 1997.

    Article  Google Scholar 

  18. R.M. Gulrajani. Models of the electrical activity of the heart and computer simulation of the electrocardiogram. CRC Crit Rev Biomed Eng 16: 1–61, 1988.

    Google Scholar 

  19. A. Muler, and V. Markin. Electrical properties of anisotropic nerve-muscle bisyncytia-III. Steady form of the excitation front. Biofizika 22: 671–675, 1977.

    Google Scholar 

  20. D. Durrer, R.Th. van Dam, G.E. Freud, M.J. Janse, F.J. Mejler, and R.C. Artzbaecher. Total excitation of the isolated human heart. Circulation 41: 899–912, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Simelius, K., Nenonen, J., Horáček, B.M. (2001). Simulation of Anisotropic Propagation in the Myocardium with a Hybrid Bidomain Model. In: Katila, T., Nenonen, J., Magnin, I.E., Clarysse, P., Montagnat, J. (eds) Functional Imaging and Modeling of the Heart. FIMH 2001. Lecture Notes in Computer Science, vol 2230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45572-8_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-45572-8_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42861-9

  • Online ISBN: 978-3-540-45572-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics