Skip to main content

Interactive Layout Generation with a Diagrammatic Constraint Language

  • Chapter
  • First Online:
Spatial Cognition II

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1849))

Abstract

The paper analyzes a diagrammatic reasoning problem that consists in finding a graphical layout which simultaneously satisfies a set of constraints expressed in a formal language and a set of unformalized mental constraints, e.g. esthetic preferences. For this type of problem, the performance of a layout assistance system does not only depend on its use of computational resources (algorithmic complexity) but also on the mental effort required to understand the system’s output and to plan the next interaction (cognitive complexity). We give a formal analysis of the instantiation space of a weakly constrained rectangle layout task and propose a measure for the cognitive complexity. It is discussed how the user’s control of the presentation order of the different constraint instantiations affects the cognitive complexity.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) in the priority program on spatial cognition (grant Str 301/5-2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Allen, Maintaining knowledge about temporal intervals, Communications of the ACM, 26, pp. 832–843, 1983.

    Article  MATH  Google Scholar 

  2. A. Borning, Graphically defining new building blocks in ThingLab, In: E. Glinert (ed.) Visual programming environments: paradigms and systems, IEE Computer Societey Press: Los Alamitos, CA, 450–469, 1990.

    Google Scholar 

  3. R. Coyne, M. Rosenman, A. Radford, M. Balachandran and J. Gero, Knowledge-based design systems, Addison-Wesley, Reading MA, 1990.

    Google Scholar 

  4. A. G. Cohn, Qualitative spatial representation and reasoning techniques. In: Proceedings KI-97: Advances in Artificial Intellligence, Springer, Berlin, pp. 1–30, 1997.

    Google Scholar 

  5. J. Evans, S. Newstead and R. Byrne, Human reasoning: The psychology of deduction, Lawrence Erlbaum, Hillsdale, NJ, 1993.

    Google Scholar 

  6. C. Freksa, Temporal reasoning based on semi-intervals, Artificial Intelligence, 54, pp. 199–227, 1992.

    Article  MathSciNet  Google Scholar 

  7. W. Graf, A. Kroender, S. Neurohr and R. Goebel, Experience in integrating AI and constraint programming methods for automated yellow pages layout, Künstliche Intelligenz, 2, 79–85, 1998.

    Google Scholar 

  8. L. Hoebel, W. Lorenzen and K. Martin, Integrating graphics and abstract data to visualize temporal constraints, SIGART Bulletin, 9, 18–23, 1998.

    Google Scholar 

  9. P. Johnson-Laird and R. Byrne, Deduction. Lawrence Erlbaum, Hillsdale, NJ, 1991.

    Google Scholar 

  10. M. Knauff, R. Rauh and C. Schlieder, Preferred mental models in qualitative spatial reasoning: A cognitive assessment of Allen′s calculus. In Proceedings Conference of the Cogntive Science Society, Lawrence Erlbaum, Mahwah, NJ, pp. 200–205, 1995.

    Google Scholar 

  11. D. Kurlander and S. Feiner, Inferring constraints from multiple snapshots, ACM Transactions on Graphics, 12, 277–304, 1993.

    Article  Google Scholar 

  12. P. Ladkin and A. Reinefeld, Fast algebraic methods for interval constraint problems. Annals of Mathematics and Artificial Intelligence, 19, 1997.

    Google Scholar 

  13. B. Nebel and H. Bürckert, Reasoning about temporal relations: A maximal tractable subclass of Allen′s interval algebra. Journal of the ACM, 42, pp. 43–66, 1995.

    Article  MATH  Google Scholar 

  14. R. Rauh and C. Schlieder, Symmetries of model construction in spatial relational inference, In Proceedings Conference of the Cogntive Science Society, Lawrence Erlbaum, Mahwah, NJ, pp. 638–643, 1997.

    Google Scholar 

  15. C. Schlieder and B. Berendt, Mental model construction in spatial reasoning: A comparison of two computational theories. In U. Schmid, J. Krems and F. Wysotzki (Eds.). Mind modelling: A cognitive science approach to reasoning, learning and discovery. Pabst Science Publishers, Berlin, 1998.

    Google Scholar 

  16. C. Schlieder, Diagrammatic transformation processes on two-dimensional relational maps, Journal of Visual Languages and Computing, 9, pp. 45–59, 1998.

    Article  Google Scholar 

  17. L. Weitzman and K. Wittenburg, Grammar-based articulation for multimedia document design, Multimedia Systems Journal, 4, pp. 99–111, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schlieder, C., Hagen, C. (2000). Interactive Layout Generation with a Diagrammatic Constraint Language. In: Freksa, C., Habel, C., Brauer, W., Wender, K.F. (eds) Spatial Cognition II. Lecture Notes in Computer Science(), vol 1849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45460-8_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-45460-8_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67584-6

  • Online ISBN: 978-3-540-45460-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics