Skip to main content

When Worlds Collide: Derandomization, Lower Bounds, and Kolmogorov Complexity

  • Conference paper
  • First Online:
FST TCS 2001: Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2245))

Abstract

This paper has the following goals:

  • To survey some of the recent developments in the field of derandomization.

  • To introduce a new notion of time-bounded Kolmogorov complexity (KT), and show that it provides a useful tool for understanding advances in derandomization, and for putting various results in context.

  • To illustrate the usefulness of KT, by answering a question that has been posed in the literature, and

  • To pose some promising directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babai, L., Moran, S.: Arthur-Merlin games: A randomized proof system, and a hierarchy of complexity classes. Journal of Computer and System Sciences 36 (1988) 254–276

    Article  MATH  MathSciNet  Google Scholar 

  2. Immerman, N.: Nondeterministic space is closed under complement. SIAM Journal on Computing 17 (1988) 935–938

    Article  MATH  MathSciNet  Google Scholar 

  3. Szelepcsényi, R.: The method of forced enumeration for nondeterministic automata. Acta Informatica 26 (1988) 279–284

    Article  MATH  MathSciNet  Google Scholar 

  4. Lund, C., Fortnow, L., Karlo., H., Nisan, N.: Algebraic methods for interactive proof systems. Journal of the ACM 39 (1992) 859–868

    Article  MATH  Google Scholar 

  5. Shamir, A.: IP = PSPACE. Journal of the ACM 39 (1992) 869–877

    Article  MATH  MathSciNet  Google Scholar 

  6. Razborov, A.A., Rudich, S.: Natural proofs. Journal of Computer and System Sciences 55 (1997) 24–35

    Article  MATH  MathSciNet  Google Scholar 

  7. Papadimitriou, C.: Computational Complexity. Addison-Wesley, New York (1994)

    MATH  Google Scholar 

  8. Du, D.Z., Ko, K.I.: Theory of Computational Complexity. Wiley-Interscience, New York (2000)

    MATH  Google Scholar 

  9. Vollmer, H.: Introduction to Circuit Complexity. Springer-Verlag (1999)

    Google Scholar 

  10. Hartmanis, J., Yesha, Y.: Computation times of NP sets of different densities. Theoretical Computer Science 34 (1984) 17–32

    Article  MATH  MathSciNet  Google Scholar 

  11. Allender, E., Rubinstein, R.: P-printable sets. SIAM J. Comput. 17 (1988) 1193–1202

    Article  MATH  MathSciNet  Google Scholar 

  12. Høastad, J.: Computational Limitations of Small Depth Circuits. MIT Press, Cambridge (1988)

    Google Scholar 

  13. Allender, E., Watanabe, O.: Kolmogorov complexity and degrees of tally sets. Information and Computation 86 (1990) 160–178

    Article  MATH  MathSciNet  Google Scholar 

  14. Impagliazzo, R., Tardos, G.: Decision versus search problems in super-polynomial time. In: IEEE Symposium on Foundations of Computer Science (FOCS). (1989) 222–227

    Google Scholar 

  15. Buhrman, H., Fortnow, L., Laplante, S.: Resource-bounded Kolmogorov complexity revisited. SIAM Journal on Computing (2001) to appear; a preliminary version appeared in STACS 1997.

    Google Scholar 

  16. Levin, L.A.: Randomness conservation inequalities; information and independence in mathematical theories. Information and Control 61 (1984) 15–37

    Article  MATH  MathSciNet  Google Scholar 

  17. Allender, E.: Some consequences of the existence of pseudorandom generators. Journal of Computer and System Sciences 39 (1989) 101–124

    Article  MATH  MathSciNet  Google Scholar 

  18. Allender, E.: Applications of time-bounded kolmogorov complexity in complexity theory. In: Osamu Watanabe (Ed.), Kolmogorov Complexity and Computational Complexity. Springer-Verlag (1992) 4–22

    Google Scholar 

  19. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In: ACM Symposium on Theory of Computing (STOC). (1997) 220–229

    Google Scholar 

  20. Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR lemma. Journal of Computer and System Sciences 62 (2001) 236–266

    Article  MATH  MathSciNet  Google Scholar 

  21. Arvind, V., Köbler, J.: On pseudorandomness and resource-bounded measure. Theoretical Computer Science 255 (2001) 205–221

    Article  MATH  MathSciNet  Google Scholar 

  22. Klivans, A., van Melkebeek, D.: Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses. In: ACM Symposium on Theory of Computing (STOC). (1999) 659–667

    Google Scholar 

  23. Miltersen, P.B., Vinodchandran, N.V.: Derandomizing Arthur-Merlin games using hitting sets. In: IEEE Symposium on Foundations of Computer Science (FOCS). (1999) 71–80

    Google Scholar 

  24. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time simulations unless EXPTIME has publishable proofs. Computational Complexity 3 (1993) 307–318

    Article  MATH  MathSciNet  Google Scholar 

  25. Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness: Exponential time vs. probabilistic polynomial time. In: IEEE Conference on Computational Complexity. (2001) 2–12

    Google Scholar 

  26. Antunes, L., Fortnow, L., van Melkebeek, D.: Computational depth. In: IEEE Conference on Computational Complexity. (2001) 266–273

    Google Scholar 

  27. Ronneburger, D.: Personal communication. (2001)

    Google Scholar 

  28. Nisan, N., Wigderson, A.: Hardness vs. randomness. Journal of Computer and System Sciences 49 (1994) 149–167

    Article  MATH  MathSciNet  Google Scholar 

  29. Impagliazzo, R., Shaltiel, R., Wigderson, A.: Near-optimal conversion of hardness into pseudo-randomness. In: IEEE Symposium on Foundations of Computer Science (FOCS). (1999) 181–190

    Google Scholar 

  30. Fortnow, L.: Comparing notions of full derandomization. In: IEEE Conference on Computational Complexity. (2001) 28–34

    Google Scholar 

  31. Kabanets, V., Racko., C., Cook, S.: Efficiently approximable real-valued functions. In: Electronic Colloquium on Computational Complexity (ECCC) Report TR00-034. (2000) (http://www.eccc.uni-trier.de/eccc).

  32. Zimand, M.: Large sets in AC0 have many strings with low Kolmogorov complexity. Information Processing Letters 62 (1997) 165–170

    Article  MathSciNet  Google Scholar 

  33. Agrawal, M.: Hard sets and pseudo-random generators for constant depth circuits. In: Proceedings 21st Foundations of Software Technology and Theoretical Computer Science Conference (FST&TCS). Lecture Notes in Computer Science, Springer (2001) (these proceedings).

    Google Scholar 

  34. Regan, K.W., Sivakumar, D., Cai, J.Y.: Pseudorandom generators, measure theory, and natural proofs. In: IEEE Symposium on Foundations of Computer Science (FOCS). (1995) 26–35

    Google Scholar 

  35. Lutz, J.H.: Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences 44 (1992) 220–258

    Article  MATH  MathSciNet  Google Scholar 

  36. Buhrman, H., Torenvliet, L.: Randomness is hard. SIAM Journal on Computing 30 (2001) 1485–1501

    Article  MathSciNet  Google Scholar 

  37. Ko, K.I.: On the complexity of learning minimum time-bounded Turing machines. SIAM Journal on Computing 20 (1991) 962–986

    Article  MATH  MathSciNet  Google Scholar 

  38. Hartmanis, J.: Generalized Kolmogorov complexity and the structure of feasible computations (preliminary report). In: IEEE Symposium on Foundations of Computer Science (FOCS). (1983) 439–445

    Google Scholar 

  39. Kabanets, V., Cai, J.Y.: Circuit minimization problem. In: ACM Symposium on Theory of Computing (STOC). (2000) 73–79

    Google Scholar 

  40. Buhrman, H., Mayordomo, E.: An excursion to the Kolmogorov random strings. Journal of Computer and System Sciences 54 (1997) 393–399

    Article  MATH  MathSciNet  Google Scholar 

  41. Agrawal, M.: The first-order isomorphism theorem. In: Proceedings 21st Foundations of Software Technology and Theoretical Computer Science Conference (FST&TCS). Lecture Notes in Computer Science, Springer (2001) (these proceedings).

    Google Scholar 

  42. Trevisan, L.: Construction of extractors using pseudo-random generators. Journal of the ACM (2001) to appear; a preliminary version appeared in STOC 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Allender, E. (2001). When Worlds Collide: Derandomization, Lower Bounds, and Kolmogorov Complexity. In: Hariharan, R., Vinay, V., Mukund, M. (eds) FST TCS 2001: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2001. Lecture Notes in Computer Science, vol 2245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45294-X_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45294-X_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43002-5

  • Online ISBN: 978-3-540-45294-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics