Skip to main content

Symmetries of Second- and Third-Order Ordinary Differential Equations

  • Conference paper
  • First Online:
Symbolic and Numerical Scientific Computation (SNSC 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2630))

  • 573 Accesses

Abstract

In order to apply Lie’s symmetry theory for solving a differential equation it must be possible to identify the group of symmetries leaving the equation invariant. The answer is obtained in two steps. At first a classification of the possible symmetries of equations of the respective order is determined. Secondly a decision procedure is provided which allows to identify the symmetry type within this classification. For second-order equations the answer has been obtained by Lie himself. In this article the complete answer for quasilinear equations of order three is given. An important tool is the Janet base representation for the determining system of the symmetries.

Supported in part by INTAS Grant 99-0167

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bluman 1990. Bluman G. W., S. Kumei S.: Symmetries of Differential Equations, Springer, Berlin (1990).

    Google Scholar 

  • Janet 1920. Janet M.: Les systèmes d’équations aux dérivées partielles, Journal de mathématiques 83, 65–123 (1920).

    Google Scholar 

  • Kamke 1961. Kamke E.: Differentialgleichungen: Lösungsmethoden und Lösungen, I. Gewöhnliche Differentialgleichungen. Akademische Verlagsgesellschaft, Leipzig (1961).

    Google Scholar 

  • Killing 1887. Killing W.: Die Zusammensetzung der stetigen endlichen Transformationsgruppen. Mathematische Annalen 31, 252–290, 33, 1–48, 34, 57–122, 36, 161–189 (1887).

    Article  MathSciNet  Google Scholar 

  • Lie 1883. Lie S.: Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestatten I, II, III and IV. Archiv for Mathematik VIII, page 187–224, 249–288, 371–458 and IX, page 431–448 respectively (1883) [Gesammelte Abhandlungen, vol. V, page 240–281, 282–310, 362–427 and 432–446].

    Google Scholar 

  • Lie 1888. Lie S.: Theorie der Transformationsgruppen I, II and III. Teubner, Leipzig (1888). [Reprinted by Chelsea Publishing Company, New York (1970)].

    Google Scholar 

  • Lie 1891. Lie S.: Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen. Teubner, Leipzig (1891). [Reprinted by Chelsea Publishing Company, New York (1967)].

    MATH  Google Scholar 

  • Lie 1893. Lie S.: Vorlesungen über continuierliche Gruppen. Teubner, Leipzig (1893). [Reprinted by Chelsea Publishing Company, New York (1971)].

    Google Scholar 

  • Loewy 1906. Loewy A.: Über vollständig reduzible lineare homogene Differentialgleichungen. Mathematische Annalen 56, 89–117 (1906).

    Article  MathSciNet  Google Scholar 

  • Olver 1986. Olver P.: Application of Lie Groups to Differential Equations. Springer, Berlin (1986).

    Google Scholar 

  • Schwarz 1995. Schwarz F.: Symmetries of 2nd and 3rd Order ODE’s. In: Proceedings of the ISSAC’95, ACM Press, A. Levelt, Ed., page 16–25 (1995).

    Google Scholar 

  • Schwarz 1996. Schwarz F.: Janet Bases of 2nd Order Ordinary Differential Equations. In: Proceedings of the ISSAC’96, ACM Press, Lakshman, Ed., page 179–187 (1996)

    Google Scholar 

  • Schwarz 2002. Schwarz F.: Algorithmic Lie Theory for Solving Ordinary Differential Equations. To appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwarz, F. (2003). Symmetries of Second- and Third-Order Ordinary Differential Equations. In: Winkler, F., Langer, U. (eds) Symbolic and Numerical Scientific Computation. SNSC 2001. Lecture Notes in Computer Science, vol 2630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45084-X_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45084-X_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40554-2

  • Online ISBN: 978-3-540-45084-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics