Skip to main content

The Complexity of Boolean Matrix Root Computation

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2697))

Included in the following conference series:

  • 882 Accesses

Abstract

We show that finding roots of Boolean matrices is an NPhard problem. This answers a twenty year old question from semigroup theory. Interpreting Boolean matrices as directed graphs, we further reveal a connection between Boolean matrix roots and graph isomorphism, which leads to a proof that for a certain subclass of Boolean matrices related to subdivision digraphs, root finding is of the same complexity as the graph-isomorphism problem.

Member of the European graduate school “Combinatorics, Geometry, and Computation” supported by the Deutsche Forschungsgemeinschaft, grant GRK 588/2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive reduction of a directed graph. SIAM Journal on Computing, 1(2):131–137, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  2. Kellogg S. Booth. Isomorphism testing for graphs, semigroups, and finite automata are polynomially equivalent problems. SIAM Journal on Computing, 7(3):273–279, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  3. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms, chapter 26. MIT Press, 1990.

    Google Scholar 

  4. Bart de Schutter and Bart de Moor. On the sequence of consecutive powers of a matrix in a Boolean algebra. SIAM Journal on Matrix Analysis and Applications, 21(1):328–354, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  5. Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. Journal of Combinatorial Theory, Series B, 48:92–110, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  6. Nicholas J. Higham. Newton’s method for the matrix square root. Mathematics of Computation, 46(174):537–549, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. R. Johnson, K. Okubo, and R. Reams. Uniqueness of matrix square roots and an application. Linear Algebra and Applications, 323:52–60, 2001.

    Article  MathSciNet  Google Scholar 

  8. Volker Kaibel and Alexander Schwartz. On the complexity of isomorphism problems related to polytopes. To appear in Graphs and Combinatorics.

    Google Scholar 

  9. Ki Hang Kim. Boolean matrix theory and applications. Marcel Dekker, Inc., 1982.

    Google Scholar 

  10. Johannes Köbler, Uwe Schöning, and Jacobo Torán. The graph isomorphism problem. Birkhäuser, 1993.

    Google Scholar 

  11. Ya Yan Lu. A Padé approximation method for square roots of symmetric positive definite matrices. SIAM Journal on Matrix Analysis and Applications, 19(3):833–845, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  12. Anna Lubiw. Some NP-complete problems similar to graph isomorphism. SIAM Journal on Computing, 1981.

    Google Scholar 

  13. George Markowsky. Ordering D-classes and computing Shein rank is hard. Semigroup Forum, 44:373–375, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  14. Rudolph Mathon. A note on the graph isomorphism counting problem. Information Processing Letters, 8(3):131–132, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  15. Rajeev Motwani and Madhu Sudan. Computing roots of graphs is hard. Discrete Applied Mathematics, 54(1):81–88, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  16. Ian Munro. Efficient determination of the transitive closure of a directed graph. Information Processing Letters, 1:56–58, 1971.

    Article  MATH  Google Scholar 

  17. Panayiotis J. Psarrakos. On the mth roots of a complex matrix. The Electronic Journal of Linear Algebra, 9:32–41, 2002.

    MATH  MathSciNet  Google Scholar 

  18. Kenneth A. Ross and Charles R. B. Wright. Discrete mathematics, chapter 7.5. Prentice-Hall, second edition, 1988.

    Google Scholar 

  19. Larry L. Stockmeyer. The minimal set basis problem is NP-complete. IBM Research Report No. RC-5431, IBM Thomas J. Watson Research Center, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kutz, M. (2003). The Complexity of Boolean Matrix Root Computation. In: Warnow, T., Zhu, B. (eds) Computing and Combinatorics. COCOON 2003. Lecture Notes in Computer Science, vol 2697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45071-8_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-45071-8_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40534-4

  • Online ISBN: 978-3-540-45071-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics