Skip to main content

A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2719))

Included in the following conference series:

Abstract

A κ-system consists of κ quadratic Diophantine equations over nonnegative integer variables s 1, ..., s m, t 1, ..., t n of the form:

$$ \begin{array}{*{20}c} {\sum\limits_{1 \leqslant j \leqslant l} {B_{1j} \left( {t_1 , \ldots ,t_n } \right)A_{1j} \left( {s_1 , \ldots ,s_m } \right) = C_1 \left( {s_1 , \ldots ,s_m } \right)} } \\ \vdots \\ {\sum\limits_{1 \leqslant j \leqslant l} {B_{kj} \left( {t_1 , \ldots ,t_n } \right)A_{kj} \left( {s_1 , \ldots ,s_m } \right) = C_k \left( {s_1 , \ldots ,s_m } \right)} } \\ \end{array} $$

where l, n, m are positive integers, the B’s are nonnegative linear polynomials over t 1, ..., t n (i.e., they are of the form b 0 + b 1 t 1 + ... + b n t n, where each b i is a nonnegative integer), and the A’s and C’s are nonnegative linear polynomials over s 1, ..., s m. We show that it is decidable to determine, given any 2-system, whether it has a solution in s 1, ..., s m, t 1, ..., t n, and give applications of this result to some interesting problems in verification of infinite-state systems. The general problem is undecidable; in fact, there is a fixed k > 2 for which the k-system problem is undecidable. However, certain special cases are decidable and these, too, have applications to verification.

The research of Oscar H. Ibarra has been supported in part by NSF Grants IIS-0101134 and CCR02-08595.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Alur. Timed automata. In CAV’99, volume 1633 of LNCS, pages 8–22. Springer, 1999.

    Google Scholar 

  2. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235, April 1994.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: application to model-checking. In CONCUR’97, volume 1243 of LNCS, pages 135–150. Springer, 1997.

    Google Scholar 

  4. T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with unbounded integer variables: symbolic representations, approximations, and experimental results. ACM Transactions on Programming Languages and Systems, 21(4):747–789, July 1999.

    Article  Google Scholar 

  5. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Transactions on Programming Languages and Systems, 8(2):244–263, April 1986.

    Article  MATH  Google Scholar 

  6. H. Comon and Y. Jurski. Multiple counters automata, safety analysis and Pres-burger arithmetic. In CAV’98, volume 1427 of LNCS, pages 268-279. Springer, 1998.

    Google Scholar 

  7. Z. Dang. Verifying and debugging real-time infinite state systems (PhD. Dissertation). Department of Computer Science, University of California at Santa Barbara, 2000.

    Google Scholar 

  8. Z. Dang, O. Ibarra, and Z. Sun. On the emptiness problems for two-way nondeterministic finite automata with one reversal-bounded counter. In ISAAC’02, volume 2518 of LNCS, pages 103-114. Springer, 2002.

    Google Scholar 

  9. Zhe Dang. Binary reachability analysis of pushdown timed automata with dense clocks. In CAV’01, volume 2102 of LNCS, pages 506–517. Springer, 2001.

    Google Scholar 

  10. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering, 23(5):279–295, May 1997. Special Issue: Formal Methods in Software Practice.

    Article  MathSciNet  Google Scholar 

  11. O. H. Ibarra. Reversal-bounded multicounter machines and their decision problems. Journal of the ACM, 25(1):116–133, January 1978.

    Article  MATH  MathSciNet  Google Scholar 

  12. O. H. Ibarra and Z. Dang. Deterministic two-way finite automata augmented with monotonic counters. 2002 (submitted).

    Google Scholar 

  13. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell Massachusetts, 1993.

    MATH  Google Scholar 

  14. O. Kupferman and M.Y. Vardi. An automata-theoretic approach to reasoning about infinite-state systems. In CAV’00, volume 1855 of LNCS, pages 36–52. Springer, 2000.

    Google Scholar 

  15. K. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson, and J. Romijn. As cheap as possible: Efficient cost-optimal reachability for priced timed automata. In CAV’01, volume 2102 of LNCS, pages 493–505. Springer, 2001.

    Google Scholar 

  16. Y. V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, 1993.

    Google Scholar 

  17. M. Minsky. Recursive unsolvability of Post’s problem of Tag and other topics in the theory of Turing machines. Ann. of Math., 74:437–455, 1961.

    Article  MathSciNet  Google Scholar 

  18. R. Parikh. On context-free languages. Journal of the ACM, 13:570–581, 1966.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In LICS’86, pages 332–344. IEEE Computer Society Press, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xie, G., Dang, Z., Ibarra, O.H. (2003). A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds) Automata, Languages and Programming. ICALP 2003. Lecture Notes in Computer Science, vol 2719. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45061-0_53

Download citation

  • DOI: https://doi.org/10.1007/3-540-45061-0_53

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40493-4

  • Online ISBN: 978-3-540-45061-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics