Skip to main content

transsys: A Generic Formalism for Modelling Regulatory Networks in Morphogenesis

  • Conference paper
  • First Online:
Advances in Artificial Life (ECAL 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2159))

Included in the following conference series:

Abstract

The formal language transsys is introduced as a tool for comprehensively representing regulatory gene networks in a way that makes them accessible to ALife modelling. As a first application, Linden-mayer systems are enhanced by integration with transsys. The resulting formalism, called L—transsys, is used to implement the ABC model of flower morphogenesis. This transsys ABC model is extensible and allows dynamical modelling on the molecular and on the morphological level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrew Adamatzky. Simulation of inflorescence growth in cellular automata. Chaos, Solitons & Fractals, 7:1065–1094, 1996.

    Article  Google Scholar 

  2. Gerhard Buck-Sorlin and Konrad Bachmann. Simulating the morphology of barley spike phenotypes using genotype information. Agronomie, 20:691–702, 2000.

    Article  Google Scholar 

  3. Kurt Fleischer and Alan Barr. The multiple mechanisms of morphogenesis: A simulation testbed for the study of multicellular development. In Christopher G. Langton, editor, Artificial Life III, Santa Fe Institute Studies in the Sciences of Complexity, pages 379–416, Redwood City, CA, 1994. Addison Wesley Longman.

    Google Scholar 

  4. Christian Fournier and Bruno Andrieu. A 3D architectural and process-based model of maize development. Annals of Botany, 81:233–250, 1998.

    Article  Google Scholar 

  5. Christian Jacob. Evolution programs evolved. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors, PPSN-IV, pages 42–51, Berlin, Germany, 1996. Springer Verlag.

    Google Scholar 

  6. Jaap A. Kaandorp. Simulation of environmentally induced growth forms in marine sessile organisms. Fractals, 1:375–379, 1993.

    Article  Google Scholar 

  7. Jan T. Kim. LindEvol: Artificial models for natural plant evolution. Künstliche Intelligenz, pages 26–32, 2000.

    Google Scholar 

  8. Winfried Kurth. Growth grammar interpreter GROGRA 2.4: A software tool for the 3-dimensional interpretation of stochastic, sensitive growth grammars in the context of plant modelling. introduction and reference manual. Technical report, Universität Göttingen, 1994. ftp://www.uni-forst.gwdg.de/pub/biom/gro.ps.gz.

  9. Winfried Kurth. Towards universality of growth grammars: Models of Bell, Pagés, and Takenaka revisited. Ann. For. Sci., 57:543–554, 2000.

    Article  Google Scholar 

  10. Koji Kyoda and Hiroaki Kitano. A model of axis determination for the Drosophila wing disc. In Dario Floreano, Jean-Daniel Nicoud, and Francesco Mondada, editors, Advances in Artificial Life, Lecture Notes in Artificial Intelligence, pages 473–476, Berlin Heidelberg, 1999. Springer-Verlag.

    Google Scholar 

  11. C.G. Langton, C. Taylor, J.D. Farmer, and S. Rasmussen, editors. Artificial Life II, Redwood City, CA, 1992. Addison-Wesley.

    Google Scholar 

  12. H. Meinhardt. Biological pattern formation: New observations provide support for theoretical predictions. BioEssays, 16:627–632, 1994.

    Article  Google Scholar 

  13. Luis Mendoza and Elena R. Alvarez-Buylla. Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. J.theor.Biol., 193:307–319, 1998.

    Article  Google Scholar 

  14. Elliot M. Meyerowitz. The genetics of flower development. Scientific American, 271(5):56–65, 1994.

    Article  Google Scholar 

  15. Karl J. Niklas. Adaptive walks through fitness landscapes for early vascular land plants. American Journal of Botany, 84:16–25, 1997.

    Article  Google Scholar 

  16. S.W. Omholt, E. Plathe, L. Oyehaug, and K.F. Xiang. Gene regulatory networks generating the phenomena of additivity, dominance and epistasis. Genetics, 155:969–980, 2000.

    Google Scholar 

  17. P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants. Springer-Verlag, New York, 1990.

    MATH  Google Scholar 

  18. Günter Theißen and Heinz Saedler. MADS-box genes in plant ontogeny and phylogeny: Haeckel’s’ biogenetic law’ revisited. Current Opinion in Genetics and Development, 5:628–639, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, J.T. (2001). transsys: A Generic Formalism for Modelling Regulatory Networks in Morphogenesis. In: Kelemen, J., Sosík, P. (eds) Advances in Artificial Life. ECAL 2001. Lecture Notes in Computer Science(), vol 2159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44811-X_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-44811-X_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42567-0

  • Online ISBN: 978-3-540-44811-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics