Skip to main content

Computer Science in Physics

  • Chapter
  • First Online:
Informatics

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2000))

  • 809 Accesses

Abstract

This talk describes how techniques developed by Computer Scientists have helped our understanding of certain problems in statistical physics which involve randomness and “frustration”. Examples will be given from two problems that have been widely studied: the “spin glass” and the “random field model”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Universality became well established after the development of renormalization group theory by K. Wilson. A good reference is J. Cardy, Scaling and Renormalization in Statistical Physics, (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  2. Spin Glasses and Random Fields, A. P. Young Ed., (World Scientific, Singapore, 1998)

    Google Scholar 

  3. K. Binder and A. P. Young, Spin Glasses: Experimental Facts, Theoretical Concepts and Open Questions, Rev. Mod. Phys. 58, 801 (1986).

    Google Scholar 

  4. A good review of the application of optimization methods to problems in statistical physics is H. Rieger, Frustrated Systems: Ground State Properties via Combinatorial Optimization, in Advances in Computer Simulations, Lecture Notes in Physics, 501, J. Kertész and I. Kondor Eds., (Springer-Verlag, Heidelberg, 1998). This is also available on the cond-mat archive as cond-mat/9705010. The URL for condmat is http://xxx.lanl.gov/archive/cond-mat.

  5. According to statistical mechanics, a system in thermal equilibrium has a probability proportional to exp(-El/kBT) of being in a state l with energy El, where T is the temperature, and kB is Boltzmann’s constant (usually set to unity in model calculations). This exponential is known as a “Boltzmann factor”.

    Google Scholar 

  6. S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by Simulated Annealing, Science 220 671 (1983).

    Google Scholar 

  7. D. P. Belanger and A. P. Young, The Random Field Ising model, J. Magn. and Magn. Mat. 100, 272 (1991).

    Google Scholar 

  8. K. Hukushima and K. Nemoto, Exchange Monte Carlo Method and Application to Spin Glass Simulations, J. Phys. Soc. Japan 65, 1604 (1996).

    Google Scholar 

  9. H. G. Katzgraber, M. Palassini and A. P. Young, Spin Glasses at Low Temperatures, cond-mat/0007113.

    Google Scholar 

  10. Y. Imry and S. K. Ma, Phys. Rev. Lett. 35, 1399 (1975).

    Google Scholar 

  11. F. Barahona, J. Phys. A. 18, L673 (1985); J.-C. Anglés d’Auriac, M. Preissman and R. Rammal, J. de Physique Lett. 46, L173 (1985).

    Google Scholar 

  12. A. T. Ogielski, Phys. Rev. Lett. 57, 1251 (1986).

    Google Scholar 

  13. N. Sourlas, Universality in Random Systems: The Case of the 3-d Random Field Ising model cond-mat/9810231; J.-C. Anglés d’Auriac and N. Sourlas, The 3-d Random Field Ising Model at Zero Temperature, Europhysics Lett. 39, 473 (1997).

    Google Scholar 

  14. H. Rieger and A. P. Young, Critical Exponents of the Three Dimensional Random Field Ising Model, J. Phys. A, 26, 5279 (1993); H. Rieger, Critical Behavior of the 3d Random Field Ising Model: Two-Exponent Scaling or First Order Phase Transition?, Phys. Rev. B 52, 6659 (1995).

    Google Scholar 

  15. D. P. Belanger, A. R. King and V. Jaccarino, Phys. Rev. B 31, 4538 (1985).

    Google Scholar 

  16. H. G. Ballesteros, A. Cruz, L.A. Fernandez, V. Martin-Mayor, J. Pech, J. J. Ruiz-Lorenzo, A. Tarancon, P. Tellez, C.L. Ullod, and C. Ungil, Critical Behavior of the Three-Dimensional Ising Spin Glass, cond-mat/0006211.

    Google Scholar 

  17. D. S. Fisher and D. A. Huse, J. Phys. A. 20 L997 (1987); D. A. Huse and D. S. Fisher, J. Phys. A. 20 L1005 (1987); D. S. Fisher and D. A. Huse, Phys. Rev. B 38 386 (1988).

    Google Scholar 

  18. G. Parisi, Phys. Rev. Lett. 43, 1754 (1979); J. Phys. A 13, 1101, 1887, L115 (1980; Phys. Rev. Lett. 50, 1946 (1983).

    Google Scholar 

  19. F. Barahona, J. Phys. A 15, 3241 (1982); F. Barahona, R. Maynard, R. Rammal and J. P. Uhry, J. Phys. A 15, 673 (1982).

    Google Scholar 

  20. The group of Prof. M. Jünger, at the University of Cologne, has generously made available to the public a server which calculates exact ground states of the Ising spin glass in two dimensions with periodic boundary conditions using a Branch and Cut algorithm. Information about this service can be obtained at http://www.informatik.uni-koeln.de/lsjuenger/projects/sgs.html.

  21. K. F. Pal, The Ground State Energy of the Edwards-Anderson Ising Spin Glass with a Hybrid Genetic Algorithm, Physica A 223, 283 (1996); The Ground State of the Cubic Spin Glass with Short-Range Interactions of Gaussian Distribution, 233, 60 (1996).

    Google Scholar 

  22. M. Palassini and A. P. Young, Triviality of the Ground State Structure in Ising Spin Glasses, Phys. Rev. Lett. 83, 5126 (1999)

    Google Scholar 

  23. M. Palassini and A. P. Young, Nature of the Spin Glass State, Phys. Rev. Lett. 85, 3017 (2000)

    Google Scholar 

  24. E. Marinari and G. Parisi, On the Effects of a Bulk Perturbation on the Ground State of 3D Ising Spin Glasses, cond-mat/0007493; E. Marinari and G. Parisi, On the Effects of Changing the Boundary Conditions on the Ground State of Ising Spin Glasses, cond-mat/0005047

    Google Scholar 

  25. A. J. Bray and M. A. Moore, J. Phys. C 17, L463 (1984).

    Google Scholar 

  26. H. Rieger, L. Santen, U. Blasum, M. Diehl, and M. Jünger, The Critical Exponents of the Two-Dimensional Ising Spin Glass Revisited: Exact Ground State Calculations and Monte Carlo Simulations, J. Phys. A 29, 3939 (1996).

    Google Scholar 

  27. M. Palassini and A. P. Young, Trivial Ground State Structure in the Two-Dimensional Ising Spin Glass, Phys. Rev. B. 60, R9919 (1999).

    Google Scholar 

  28. A. A. Middleton, Numerical Investigation of the Thermodynamic Limit for Ground States in Models with Quenched Disorder, Phys. Rev. Lett. 83, 1672 (1999); Energetics and geometry of excitations in random systems, cond-mat/0007375.

    Google Scholar 

  29. A. K. Hartmann, Scaling of Stiffness Energy for 3d ± J Ising Spin Glasses, Phys. Rev. E 59, 84 (1999).

    Google Scholar 

  30. F. Krzakala and O. C. Martin, Spin and Link Overlaps in Three-Dimensional Spin Glasses, Phys. Rev. Lett, 85, 3013 (2000).

    Google Scholar 

  31. D. S. Fisher, Phys. Rev. B 51, 6411 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peter Young, A. (2001). Computer Science in Physics. In: Wilhelm, R. (eds) Informatics. Lecture Notes in Computer Science, vol 2000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44577-3_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-44577-3_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41635-7

  • Online ISBN: 978-3-540-44577-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics