Skip to main content

A Co-inductive Approach to Real Numbers

  • Conference paper
  • First Online:
Types for Proofs and Programs (TYPES 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1956))

Included in the following conference series:

Abstract

We define constructive real numbers in the logical framework Coq using streams, i.e. infinite sequences of digits. Co-inductive types and co-inductive proofs permit to work naturally on this representation. We prove our representation satisfies a set of basic properties which we propose as a set of axioms for constructive real numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Amadio and S. Coupet. “Analysis of a guard condition in Type Theory”. Technical report, INRIA, 1997.

    Google Scholar 

  2. E. Bishop. “Foundations of constructive analysis”. McGraw-Hill, New York, 1967.

    MATH  Google Scholar 

  3. L.E.J. Brouwer. “Beweis, dass jede volle Funktion gleichmässig stetig ist”. In Proc. Amsterdam 27, pages 189–194, 1924.

    Google Scholar 

  4. J. Cederquist. “A pointfree approach to Constructive Analysis in Type Theory”. PhD thesis, Göteborg University, 1997.

    Google Scholar 

  5. J. Chirimar and D.J. Howe. “Implementing constructive real analysis: preliminar report”. LNCS, 613, 1992.

    Google Scholar 

  6. R.L. Constable. “Implementing mathematics with the Nuprl development system”. Prentice-Hall, 1986.

    Google Scholar 

  7. T. Coquand. “Pattern-matching in Type Theory”. In Informal Proceedings of the 1992 Workshop on Types for Proofs and Programs, 1992.

    Google Scholar 

  8. T. Coquand. “Infinite objects in Type Theory”. In 1st Workshop on Types for Proofs and Programs, LNCS 806, 1993.

    Google Scholar 

  9. E. Giménez. “Codifying guarded definitions with recursion schemes”. In 5th Workshop on Types for Proofs and Programs, LNCS 996, 1994.

    Google Scholar 

  10. E. Giménez. “A tutorial on recursive types in Coq”. Technical report, INRIA, 1998.

    Google Scholar 

  11. E. Giménez. “Structural recursive definitions in Type Theory”. In Proceedings of ICALP’98, LNCS 1443, 1998.

    Google Scholar 

  12. M.J.C. Gordon and T.F. Melham. “Introduction to HOL: a theorem proving environment for higher order logic”. Cambridge University Press, 1993.

    Google Scholar 

  13. J.R. Harrison. “Theorem proving with real numbers”. PhD thesis, Universitiy of Cambridge, 1996.

    Google Scholar 

  14. INRIA, project Coq. “The Coq proof assistant-Reference manual V6.3.1”, May 2000.

    Google Scholar 

  15. C. Jones. “Completing the rationals and metric spaces in Lego”. In Cambridge Universitiy Press, editor, Logical Frameworks, pages 209–222. 1991.

    Google Scholar 

  16. L. Magnusson. “The implementation of Alf”. PhD thesis, Chalmers University of Technology, Göteborg, 1995.

    Google Scholar 

  17. P.J. Potts, A. Edalat, and M.H. Escardo. “Semantics of exact real arithmetic”. In IEEE Symposium on Logic in Computer Science, 1997.

    Google Scholar 

  18. C. Paulin-Mohring. “Inductive definitions inthe system Coq: rules and properties”. In Proceedings of the TLCA, 1993.

    Google Scholar 

  19. R. Pollack. “The theory of Lego, a proof checker for the Extended Calculus of Constructions”. PhD thesis, University of Edimburgh, 1994.

    Google Scholar 

  20. A. Simpson. “Lazy functional algorithms for exact real functionals”. In MFCS 1998. Springer Verlag, 1998.

    Google Scholar 

  21. A.S. Troelstra and D. van Dalen. “Constructivism in Mathematics”. North-Holland, 1988.

    Google Scholar 

  22. K. Weihrauch. “A foundation for computable analysis”. In Proceedings of DMTCS 1996, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ciaffaglione, A., Di Gianantonio, P. (2000). A Co-inductive Approach to Real Numbers. In: Coquand, T., Dybjer, P., Nordström, B., Smith, J. (eds) Types for Proofs and Programs. TYPES 1999. Lecture Notes in Computer Science, vol 1956. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44557-9_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-44557-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41517-6

  • Online ISBN: 978-3-540-44557-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics