Skip to main content

A Spectral Domain Decomposition Method and Its Application to the Simulation of Shear-Stratified Turbulence

  • Conference paper
  • First Online:
Book cover Fluid Mechanics and the Environment: Dynamical Approaches

Part of the book series: Lecture Notes in Physics ((LNP,volume 566))

Abstract

Environmental flows are replete with situations where shear and stratification coexist, and many attempts have been made to understand the generation and evolution of turbulence in stratified shear flows. Early studies have been made using laboratory simulations (Webster [32] and Rohr et al. [29]), but with increasing computer power, direct numerical simulations (DNS) and large eddy simulations (LES) have become powerful tools for studies of shear-stratified turbulence. There are many reports with numerical approaches, most of them using DNS (Gerz et al. [12], Holt et al. [14], Jacobitz et al. [16] and Werne et al. [33]) and others using LES (Kaltenbach et al. [17]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Babin, A. Mahalov, B. Nicolaenko and Y. Zhou, Theoret. Comput. Fluid Dynamics, 9, 223–251, (1997)

    Article  MATH  ADS  Google Scholar 

  2. A. Babin, A. Mahalov and B. Nicolaenko, Theoret. Comput. Fluid Dynamics, 11 215–235, (1998).

    Article  MATH  ADS  Google Scholar 

  3. R. Beland, U.S.A.F. PI/GPOL Report, Hanscom AFB, (1996).

    Google Scholar 

  4. K. Black, SIAM J. Sci. Comput., 19, No. 5, 1667–1681 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag Berlin Heidelberg, (1988).

    MATH  Google Scholar 

  6. E. N. Curchitser, M. Iskandarani and D. B. Haidvogel, J. Atmos. Oceanic Tech., 15, 510–521, (1998).

    Article  ADS  Google Scholar 

  7. C. Doering and P. Constantin, Phys. Rev. E, 53, 5957–5981, (1996).

    Article  ADS  Google Scholar 

  8. P. Fischer, L. W. Ho, G. E. Karniadakis, E. Ronquist and A. T. Patera, Comput. Structures, 30, 217–231, (1988).

    Article  ADS  MATH  Google Scholar 

  9. P. F. Fischer and E. M. Ronquist, Comput. Methods Appl. Mech. Engrg., 166, 69–76, (1994).

    Article  MathSciNet  Google Scholar 

  10. B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge University Press, (1996).

    Google Scholar 

  11. I. T. Foster and P. H. Worley, SIAM J. Sci. Comput., 18, No.3, 806–837, (1997).

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Gerz, U. Schumann and S. E. Elghobash, J. Fluid Mech., 200, 563–594, (1989).

    Article  MATH  ADS  Google Scholar 

  13. J. S. Heastheaven and D. Gottlieb, SIAM J. Sci. Comput., 17, No. 3, 579, (1996).

    Article  MathSciNet  Google Scholar 

  14. S. E. Holt, J. R. Koseff and J. H. Ferziger, J. Fluid Mech., 237, 499–539, (1992).

    Article  MATH  ADS  Google Scholar 

  15. L. Howard, Ann. Rev. Fluid Mech., 4, 473–494, (1972).

    Article  ADS  Google Scholar 

  16. F. G. Jacobitz, S. Sarkar and C. W. van Atta, J. Fluid Mech., 342, 231–261, (1997).

    Article  MATH  ADS  Google Scholar 

  17. H. J. Kaltenbach, T. Gerz and U. Schumann, J. Fluid Mech., 280, 1–40, (1994).

    Article  MATH  ADS  Google Scholar 

  18. G. E. Karniadakis, Appl. Num. Math., 6, 85–105, (1989/90).

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Keyser and M. A. Shapiro, Monthly Weather Review, 114, 452–499, (1985).

    Article  ADS  Google Scholar 

  20. J. Kim, P. Moin and R. Moser, J. Fluid Mech., 177, 133–166 (1987).

    Article  MATH  ADS  Google Scholar 

  21. M. Lesieur, Turbulence in Fluids, Kluwer Academic Publishers, (1997).

    Google Scholar 

  22. D. K. Lilly, G. B. Basset, K. Drogemeier and P. Bartello, Theoret. Comput. Fluid Dynamics, 11, 139–153, (1998).

    Article  MATH  ADS  Google Scholar 

  23. M. C. Macaraeg and C. L. Streett, Appl. Numer. Math., 2, 95, (1986).

    Article  MATH  MathSciNet  Google Scholar 

  24. J. C. McWilliams, J. B. Weiss and I. Yavneh, Science, 264, 410–413, (1994).

    Article  ADS  Google Scholar 

  25. G. D. Nastrom and K. S. Gage, J. Atmos. Sci., 42, 950–960, (1985).

    Article  ADS  Google Scholar 

  26. S. A. Orszag, J. Comput. Phys., 37, 70, (1980).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. A. T. Patera, J. Comput. Phys., 54, 468, (1984).

    Article  MATH  ADS  Google Scholar 

  28. J. M. Prusa, P. K. Smolarkiewicz, and A. A. Wyszogrodzki, SIAM News, V32, 7, (1999).

    Google Scholar 

  29. J. J. Rohr, E. C. Itsweirem, K. N. Helland and C. W. Atta, J. Fluid Mech., 187, 1–33, (1988).

    Article  MATH  ADS  Google Scholar 

  30. H. Tennekes and J. L. Lumley, A First Course in Turbulence, The MIT Press, (1992).

    Google Scholar 

  31. Z. Warhaft, Ann. Rev. Fluid Mech., (in press).

    Google Scholar 

  32. C. A. G. Webster, J. Fluid Mech., 19, 221–245, (1964).

    Article  MATH  ADS  Google Scholar 

  33. J. Werne and D. C. Fritts, Geophysical Research Letters, 26, No.4, 439–442, (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-VerlagBerlin Heidelber

About this paper

Cite this paper

Tse, K., Mahalov, A., Nicolaenko, B., Fernando, J. (2001). A Spectral Domain Decomposition Method and Its Application to the Simulation of Shear-Stratified Turbulence. In: Lumley, J.L. (eds) Fluid Mechanics and the Environment: Dynamical Approaches. Lecture Notes in Physics, vol 566. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44512-9_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-44512-9_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41475-9

  • Online ISBN: 978-3-540-44512-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics