Skip to main content

Bundle Adjustment — A Modern Synthesis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1883))

Abstract

This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics covered include: the choice of cost function and robustness; numerical optimization including sparse Newton methods, linearly convergent approximations, updating and recursive methods; gauge (datum) invariance; and quality control. The theory is developed for general robust cost functions rather than restricting attention to traditional nonlinear least squares.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Ackermann. Digital image correlation: Performance and potential applications in photogrammetry. Photogrammetric Record, 11(64):429–439, 1984.

    Article  Google Scholar 

  2. F. Amer. Digital block adjustment. Photogrammetric Record, 4:34–47, 1962.

    Article  Google Scholar 

  3. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide, Third Edition. SIAM Press, Philadelphia, 1999. LAPACK home page: http://www.netlib.org/lapack.

    Google Scholar 

  4. C. Ashcraft and J. W.-H. Liu. Robust ordering of sparse matrices using multisection. SIAM J. Matrix Anal. Appl., 19:816–832, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. B. Atkinson, editor. Close Range Photogrammetry and Machine Vision. Whittles Publishing, Roseleigh House, Latheronwheel, Caithness, Scotland, 1996.

    Google Scholar 

  6. W. Baarda. S-transformations and criterion matrices. Netherlands Geodetic Commission, Publications on Geodesy, New Series, Vol. 5, No. 1 (168 pages), 1967.

    Google Scholar 

  7. W. Baarda. Statistical concepts in geodesy Netherlands Geodetic Commission Publications on Geodesy, New Series, Vol. 2, No. 4 (74 pages), 1967.

    Google Scholar 

  8. W. Baarda. A testing procedure for use in geodetic networks. Netherlands Geodetic Commission Publications on Geodesy, New Series, Vol. 2, No. 5 (97 pages), 1968.

    Google Scholar 

  9. E. P. Baltsavias. Multiphoto Geometrically Constrained Matching. PhD thesis, ETH-Zurich, 1992.

    Google Scholar 

  10. R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM Press, Philadelphia, 1993.

    MATH  Google Scholar 

  11. Åke Björck. Numerical Methods for Least Squares Problems. SIAM Press, Philadelphia, PA, 1996.

    MATH  Google Scholar 

  12. J. A. R. Blais. Linear least squares computations using Givens transformations. Canadian Surveyor, 37(4):225–233, 1983.

    Google Scholar 

  13. P. T. Boggs, R. H. Byrd, J. E. Rodgers, and R. B. Schnabel. Users reference guide for ODRPACK 2.01: Software for weighted orthogonal distance regression. Technical Report NISTIR 92-4834, NIST, Gaithersburg, MD, June 1992.

    Google Scholar 

  14. P. T. Boggs, R. H. Byrd, and R. B. Schnabel. A stable and efficient algorithm for nonlinear orthogonal regression. SIAM J. Set Statist. Comput, 8:1052–1078, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  15. R. J. Boscovich. De litteraria expeditione per pontificiam ditionem, et synopsis amplioris operis, ac habenturplura ejus ex exemplaria etiam sensorum impressa. Bononiensi Scientarum et Artum Instituto Atque Academia Commentarii, IV:353–396, 1757.

    Google Scholar 

  16. D. C. Brown. A solution to the general problem of multiple station analytical stereotriangulation. Technical Report RCA-MTP Data Reduction Technical Report No. 43 (or AFMTC TR 58-8), Patrick Airforce Base, Florida, 1958.

    Google Scholar 

  17. D. C. Brown. Close range camera calibration. Photogrammetric Engineering, XXXVII(8), August 1971.

    Google Scholar 

  18. D. C. Brown. Calibration of close range cameras. Int. Archives Photogrammetry, 19(5), 1972. Unbound paper (26 pages).

    Google Scholar 

  19. D. C. Brown. The bundle adjustment — progress and prospects. Int. Archives Photogrammetry, 21(3), 1976. Paper number 3-03 (33 pages).

    Google Scholar 

  20. Q. Chen and G. Medioni. Efficient iterative solutions to m-view projective reconstruction problem. In Int. Conf. Computer Vision & Pattern Recognition, pages II:55–61. IEEE Press, 1999.

    Google Scholar 

  21. M. A. R. Cooper and P. A. Cross. Statistical concepts and their application in photogrammetry and surveying. Photo grammetric Record, 12(71):637–663, 1988.

    Google Scholar 

  22. M. A. R. Cooper and P. A. Cross. Statistical concepts and their application in photogrammetry and surveying (continued). Photo grammetric Record, 13(77):645–678, 1991.

    Google Scholar 

  23. D. R. Cox and D. V. Hinkley. Theoretical Statistics. Chapman & Hall, 1974.

    Google Scholar 

  24. P. J. de Jonge. A comparative study of algorithms for reducing the fill-in during Cholesky factorization. Bulletin Géodésique, 66:296–305, 1992.

    Article  Google Scholar 

  25. A. Dermanis. The photogrammetric inner constraints. J. Photogrammetry & Remote Sensing, 49(1):25–39, 1994.

    Article  Google Scholar 

  26. I. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Oxford University Press, 1986.

    Google Scholar 

  27. O. Faugeras. What can be seen in three dimensions with an uncalibrated stereo rig? In G. Sandini, editor, European Conf. Computer Vision, Santa Margherita Ligure, Italy, May 1992. Springer-Verlag.

    Google Scholar 

  28. A. W. Fitzgibbon and A. Zisserman. Automatic camera recovery for closed or open image sequences. In European Conf. Computer Vision, pages 311–326, Freiburg, 1998.

    Google Scholar 

  29. R. Fletcher. Practical Methods of Optimization. John Wiley, 1987.

    Google Scholar 

  30. W. Förstner. Evaluation of block adjustment results. Int. Arch. Photogrammetry, 23-III, 1980.

    Google Scholar 

  31. W. Förstner. On the geometric precision of digital correlation. Int. Arch. Photogrammetry & Remote Sensing, 24(3): 176–189, 1982.

    Google Scholar 

  32. W. Förstner. A feature-based correspondence algorithm for image matching. Int. Arch. Photogrammetry & Remote Sensing, 26(3/3): 150–166, 1984.

    Google Scholar 

  33. W. Förstner. The reliability of block triangulation. Photogrammetric Engineering & Remote Sensing, 51(8): 1137–1149, 1985.

    Google Scholar 

  34. W. Förstner. Reliability analysis of parameter estimation in linear models with applications to mensuration problems in computer vision. Computer Vision, Graphics & Image Processing, 40:273–310, 1987.

    Article  Google Scholar 

  35. D. A. Forsyth, S. Ioffe, and J. Haddon. Bayesian structure from motion. In Int. Conf. Computer Vision, pages 660–665, Corfu, 1999.

    Google Scholar 

  36. C. F. Gauss. Werke. Königlichen Gesellschaft der Wissenschaften zu Göttingen, 1870–1928.

    Google Scholar 

  37. C. F. Gauss. Theoria Combinationis Observationum Erroribus Minimis Obnoxiae (Theory of the Combination of Observations Least Subject to Errors). SIAM Press, Philadelphia, PA, 1995. Originally published in Commentatines Societas Regiae Scientarium Gottingensis Recentiores 5, 1823 (Pars prior, Pars posterior), 6, 1828 (Supplementum). Translation and commentary by G. W. Stewart.

    Google Scholar 

  38. J. A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10:345–363, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  39. J. A. George, M. T. Heath, and E. G. Ng. A comparison of some methods for solving sparse linear least squares problems. SIAM J. Set Statist. Comput., 4:177–187, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  40. J. A. George and J. W.-H. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, 1981.

    Google Scholar 

  41. J. A. George and J. W.-H. Liu. Householder reflections versus Givens rotations in sparse orthogonal decomposition. Lin. Alg. Appl., 88/89:223–238, 1987.

    Article  MathSciNet  Google Scholar 

  42. P. Gill, W. Murray, and M. Wright. Practical Optimization. Academic Press, 1981.

    Google Scholar 

  43. P. E. Gill, G. H. Golub, W. Murray, and M. Saunders. Methods for modifying matrix factorizations. Math. Comp., 28:505–535, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  44. G. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, 3rd edition, 1996.

    Google Scholar 

  45. G. Golub and R. Plemmons. Large-scale geodetic least squares adjustment by dissection and orthogonal decomposition. Linear Algebra Appl., 34:3–28, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  46. S. Granshaw. Bundle adjustment methods in engineering photogrammetry. Photogrammetric Record, 10(56):181–207, 1980.

    Article  Google Scholar 

  47. A. Greenbaum. Behaviour of slightly perturbed Lanczos and conjugate-gradient recurrences. Linear Algebra Appl., 113:7–63, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  48. A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM Press, Philadelphia, 1997.

    MATH  Google Scholar 

  49. A. Grün. Accuracy, reliability and statistics in close range photogrammetry. In Inter-Congress Symposium of ISP Commission V, page Presented paper. Unbound paper No.9 (24 pages), Stockholm, 1978.

    Google Scholar 

  50. A. Grün. Precision and reliability aspects in close range photogrammetry. Int. Arch. Photogrammetry, 11(23B):378–391, 1980.

    Google Scholar 

  51. A. Grün. An optimum algorithm for on-line triangulation. In Symposium of Commission III of the ISPRS, Helsinki, 1982.

    Google Scholar 

  52. A. Grün. Adaptive least squares correlation — concept and first results. Intermediate Research Report to Helava Associates, Ohio State University. 13 pages, March 1984.

    Google Scholar 

  53. A. Grün. Adaptive kleinste Quadrate Korrelation and geometrische Zusatzinformationen. Vermessung, Photogrammetrie, Kulturtechnik, 9(83):309–312, 1985.

    Google Scholar 

  54. A. Grün. Algorithmic aspects of on-line triangulation. Photogrammetric Engineering & Remote Sensing, 4(51):419–436, 1985.

    Google Scholar 

  55. A. Grün and E. P. Baltsavias. Adaptive least squares correlation with geometrical constraints. In SPIE Computer Vision for Robots, volume 595, pages 72–82, Cannes, 1985.

    Google Scholar 

  56. R. Gupta and R. I. Hartley. Linear pushbroom cameras. IEEE Trans. Pattern Analysis & Machine Intelligence, September 1997.

    Google Scholar 

  57. M. S. Gyer. The inversion of the normal equations of analytical aerotriangulation by the method of recursive partitioning. Technical report, Rome Air Development Center, Rome, New York, 1967.

    Google Scholar 

  58. R. Hartley. Euclidean reconstruction from multiple views. In 2 nd Europe-U.S. Workshop on Invariance, pages 237–56, Ponta Delgada, Azores, October 1993.

    Google Scholar 

  59. R. Hartley. An object-oriented approach to scene reconstruction. In IEEE Conf. Systems, Man & Cybernetics, pages 2475–2480, Beijing, October 1996.

    Google Scholar 

  60. R. Hartley. Lines and points in three views and the trifocal tensor. Int. J. Computer Vision, 22(2): 125–140, 1997.

    Article  Google Scholar 

  61. R. Hartley, R. Gupta, and T. Chang. Stereo from uncalibrated cameras. In Int. Conf. Computer Vision & Pattern Recognition, pages 761–4, Urbana-Champaign, Illinois, 1992.

    Google Scholar 

  62. R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2000.

    Google Scholar 

  63. R. I. Hartley and T. Saxena. The cubic rational polynomial camera model. In Image Understanding Workshop, pages 649–653, 1997.

    Google Scholar 

  64. F. Helmert. Die Mathematischen und Physikalischen Theorien der höheren Geodäsie, volume 1 Teil. Teubner, Leipzig, 1880.

    Google Scholar 

  65. B. Hendrickson and E. Rothberg. Improving the run time and quality of nested dissection ordering. SIAM J. Set Comput., 20:468–489, 1998.

    Article  MathSciNet  Google Scholar 

  66. K. R. Holm. Test of algorithms for sequential adjustment in on-line triangulation. Photogrammetria, 43:143–156, 1989.

    Article  Google Scholar 

  67. M. Irani, P. Anadan, and M. Cohen. Direct recovery of planar-parallax from multiple frames. In Vision Algorithms: Theory and Practice. Springer-Verlag, 2000.

    Google Scholar 

  68. K. Kanatani and N. Ohta. Optimal robot self-localization and reliability evaluation. In European Conf. Computer Vision, pages 796–808, Freiburg, 1998.

    Google Scholar 

  69. H. M. Karara. Non-Topographic Photogrammetry. Americal Society for Photogrammetry and Remote Sensing, 1989.

    Google Scholar 

  70. G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. J. Parallel & Distributed Computing, 48:96–129, 1998.

    Article  Google Scholar 

  71. G. Karypis and V. Kumar. A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM J. Scientific Computing, 20(1):359–392, 1999. For Metis code see http://www-users.cs.umn.edu/karypis/.

    Article  MATH  MathSciNet  Google Scholar 

  72. I. P. King. An automatic reordering scheme for simultaneous equations derived from network systems. Int. J. Numer. Meth. Eng., 2:479–509, 1970.

    Article  Google Scholar 

  73. K. Kraus. Photogrammetry. Dummler, Bonn, 1997. Vol.1: Fundamentals and Standard Processes. Vol.2: Advanced Methods and Applications. Available in German, English & several other languages.

    Google Scholar 

  74. A. M. Legendre. Nouvelles méthodes pour la détermination des orbites des comètes. Courcier, Paris, 1805. Appendix on least squares.

    Google Scholar 

  75. R. Levy. Restructuring the structural stiffness matrix to improve computational efficiency. Jet Propulsion Lab. Technical Review, 1:61–70, 1971.

    Google Scholar 

  76. M. X. Li. Hierarchical Multi-point Matching with Simultaneous Detection and Location of Breaklines. PhD thesis, KTH Stockholm, 1989.

    Google Scholar 

  77. Q.-T. Luong, R. Deriche, O. Faugeras, and T. Papadopoulo. On determining the fundamental matrix: Analysis of different methods and experimental results. Technical Report RR-1894, INRIA, Sophia Antipolis, France, 1993.

    Google Scholar 

  78. S. Mason. Expert system based design of close-range photogrammetric networks. J. Photogrammetry & Remote Sensing, 50(5): 13–24, 1995.

    Article  Google Scholar 

  79. S.O. Mason. Expert System Based Design of Photogrammetric Networks. Ph.D. Thesis, Institut für Geodäsie und Photogrammetrie, ETH Zürich, May 1994.

    Google Scholar 

  80. B. Matei and P. Meer. Bootstrapping a heteroscedastic regression model with application to 3D rigid motion evaluation. In Vision Algorithms: Theory and Practice. Springer-Verlag, 2000.

    Google Scholar 

  81. P. F. McLauchlan. Gauge independence in optimization algorithms for 3D vision. In Vision Algorithms: Theory and Practice, Lecture Notes in Computer Science, Corfu, September 1999. Springer-Verlag.

    Google Scholar 

  82. P. F. McLauchlan. Gauge invariance in projective 3D reconstruction. In Multi-View Modeling and Analysis of Visual Scenes, Fort Collins, CO, June 1999. IEEE Press.

    Google Scholar 

  83. P. F. McLauchlan. The variable state dimension filter. Technical Report VSSP 5/99, University of Surrey, Dept of Electrical Engineering, December 1999.

    Google Scholar 

  84. P. F. McLauchlan. A batch/recursive algorithm for 3D scene reconstruction. In Int. Conf. Computer Vision & Pattern Recognition, Hilton Head, South Carolina, 2000.

    Google Scholar 

  85. P. F. McLauchlan and D. W. Murray. A unifying framework for structure and motion recovery from image sequences. In E. Grimson, editor, Int. Conf. Computer Vision, pages 314–20, Cambridge, MA, June 1995.

    Google Scholar 

  86. P. F. McLauchlan and D. W. Murray. Active camera calibration for a Head-Eye platform using the Variable State-Dimension filter. IEEE Trans. Pattern Analysis & Machine Intelligence, 18(1): 15–22, 1996.

    Article  Google Scholar 

  87. P. Meissl. Die innere Genauigkeit eines Punkthaufens. Österreichische Zeitschrift für Vermessungswesen, 50(5): 159–165 and 50(6): 186–194, 1962.

    Google Scholar 

  88. E. Mikhail and R. Helmering. Recursive methods in photogrammetric data reduction. Photogrammetric Engineering, 39(9):983–989, 1973.

    Google Scholar 

  89. E. Mittermayer. Zur Ausgleichung freier Netze. Zeitschrift für Vermessungswesen, 97(11):481–489, 1962.

    Google Scholar 

  90. J. J. Moré and S. J. Wright. Optimization Software Guide. SIAM Press, Philadelphia, 1993.

    MATH  Google Scholar 

  91. D. D. Morris and T. Kanade. A unified factorization algorithm for points, line segments and planes with uncertainty. In Int. Conf. Computer Vision, pages 696–702, Bombay, 1998.

    Google Scholar 

  92. D. D. Morris, K. Kanatani, and T. Kanade. Uncertainty modelling for optimal structure and motion. In Vision Algorithms: Theory and Practice. Springer-Verlag, 2000.

    Google Scholar 

  93. J. Nocedal and S.J. Wright. Numerical Optimization. Springer-Verlag, 1999.

    Google Scholar 

  94. M. Okutomi and T. Kanade. A multiple-baseline stereo. IEEE Trans. Pattern Analysis & Machine Intelligence, 15(4):353–363, 1993.

    Article  Google Scholar 

  95. D. W. Proctor. The adjustment of aerial triangulation by electronic digital computers. Photogrammetric Record, 4:24–33, 1962.

    Article  Google Scholar 

  96. B. D. Ripley. Pattern Recongition and Neural Networks. Cambridge University Press, 1996.

    Google Scholar 

  97. D. Rosenholm. Accuracy improvement of digital matching for elevation of digital terrain models. Int. Arch. Photogrammetry & Remote Sensing, 26(3/2):573–587, 1986.

    Google Scholar 

  98. S. Roy and I. Cox. A maximum-flow formulation of the n-camera stereo correspondence problem. In Int. Conf. Computer Vision, Bombay, 1998.

    Google Scholar 

  99. Y. Saad. On the rates of convergence of Lanczos and block-Lanczos methods. SIAMJ. Numer. Anal., 17:687–706, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  100. C. C. Slama, editor. Manual of Photo grammetry. American Society of Photogrammetry and Remote Sensing, Falls Church, Virginia, USA, 1980.

    Google Scholar 

  101. R. A. Snay. Reducing the profile of sparse symmetric matrices. Bulletin Géodésique, 50:341–352, 1976. Also NOAA Technical Memorandum NOS NGS-4, National Geodetic Survey, Rockville, MD.

    Article  MathSciNet  Google Scholar 

  102. R. Szeliski, S.B. Kang, and H. Y. Shum. A parallel feature tracker for extended image sequences. Technical Report CRL 95/2, DEC Cambridge Research Labs, May 1995.

    Google Scholar 

  103. R. Szeliski and S.B. Kang. Shape ambiguities in structure from motion. In European Conf. Computer Vision, pages 709–721, Cambridge, 1996.

    Google Scholar 

  104. R. Szeliski and H.Y Shum. Motion estimation with quadtree splines. In Int. Conf. Computer Vision, pages 757–763, Boston, 1995.

    Google Scholar 

  105. B. Triggs. A new approach to geometric fitting. Available from http://www.inrialpes.fr/movi/people/Triggs, 1997.

  106. B. Triggs. Optimal estimation of matching constraints. In R. Koch and L. Van Gool, editors, 3D Structure from Multiple Images of Large-scale Environments SMILE’98, Lecture Notes in Computer Science. Springer-Verlag, 1998.

    Google Scholar 

  107. G. L. Strang van Hees. Variance-covariance transformations of geodetic networks. Manuscripta Geodaetica, 7:1–20, 1982.

    MATH  Google Scholar 

  108. X. Wang and T. A. Clarke. Separate adjustment of close range photogrammetric measurements. Int. Symp. Photogrammetry & Remote Sensing, XXXII, part 5:177–184, 1998.

    Google Scholar 

  109. P.R. Wolf and C.D. Ghilani. Adjustment Computations: Statistics and Least Squares in Surveying and GIS. John Wiley & Sons, 1997.

    Google Scholar 

  110. B.P. Wrobel. Facets stereo vision (FAST vision) — a new approach to computer stereo vision and to digital photogrammetry. In ISPRS Intercommission Conf. Fast Processing of Photogrammetric Data, pages 231–258, Interlaken, Switzerland, June 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W. (2000). Bundle Adjustment — A Modern Synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds) Vision Algorithms: Theory and Practice. IWVA 1999. Lecture Notes in Computer Science, vol 1883. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44480-7_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-44480-7_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67973-8

  • Online ISBN: 978-3-540-44480-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics