Skip to main content

The Role of Histone Modifications in Epigenetic Transitions During Normal and Perturbed Development

  • Conference paper
Book cover The Histone Code and Beyond

Abstract

Epigenetic mechanisms control eukaryotic development beyond DNA-stored information. DNA methylation, histone modifications and variants, nucleosome remodeling and noncoding RNAs all contribute to the dynamic make-up of chromatin under distinct developmental options. In particular, the great diversity of covalent histone tail modifications has been proposed to be ideally suited for imparting epigenetic information. While most of the histone tail modifications represent transient marks at transcriptionally permissive chromatin, some modifications appear more robust at silent chromatin regions, where they index repressive epigenetic states with functions also outside transcriptional regulation. Under-representation of repressive histone marks could be indicative of epigenetic plasticity in stem, young and tumor cells, while committed and senescent (old) cells often display increased levels of these more stable modifications. Here, we discuss profiles of normal and aberrant histone lysine methylation patterns, as they occur during the transition of an embryonic to a differentiated cell or in controlled self-renewal vs pro-neoplastic or metastatic conditions. Elucidating these histone modification patterns promises to have important implications for novel advances in stem cell research, nuclear reprogramming and cancer, and may offer novel targets for the combat of tumor cells, potentially leading to new diagnostic and therapeutic avenues in human biology and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arney KL, Bao S, Bannister AJ, Kouzarides T, Surani MA (2002) Histone methylation defines epigenetic asymmetry in the mouse zygote. Int J Dev Biol 46:317–320

    PubMed  CAS  Google Scholar 

  • Bao S, Miyoshi N, Okamoto I, Jenuwein T, Heard E, Surani MA (2005) Initiation of epigenetic reprogramming of the X chromosome in somatic nuclei transplanted to a mouse oocyte. EMBO Rep 6:748–754

    Article  PubMed  CAS  Google Scholar 

  • Baxter J, Sauer S, Peters A, John R, Williams R, Caparros ML, Arney K, Otte A, Jenuwein T, Merkenschlager M, Fisher AG (2004) Histone hypomethylation is an indicator of epigenetic plasticity in quiescent lymphocytes. EMBO J 23:4462–4472

    Article  PubMed  CAS  Google Scholar 

  • Berger SL (2002) Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12:142–148

    Article  PubMed  CAS  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  PubMed  CAS  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Stein H, Dorken B, Schlegelberger B, Jenuwein T, Schmitt CA (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–665

    Article  PubMed  CAS  Google Scholar 

  • Briggs SD, Xiao T, Sun ZW, Caldwell JA, Shabanowitz J, Hunt DF, Allis CD, Strahl BD (2002) Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418:498

    Article  PubMed  CAS  Google Scholar 

  • Cavalli G, Paro R (1999) Epigenetic inheritance of active chromatin after removal of the main transactivator. Science 286:955–958

    Article  PubMed  CAS  Google Scholar 

  • Cheng JC, Yoo CB, Weisenberger DJ, Chuang J, Wozniak C, Liang G, Marquez VE, Greer S, Orntoft TF, Thykjaer T, Jones PA (2004) Preferential response of cancer cells to zebularine. Cancer Cell 6:151–158

    Article  PubMed  CAS  Google Scholar 

  • Cheng D, Yadav N, King RW, Swanson MS, Weinstein EJ, Bedford MT (2004) Small molecule regulators of protein arginine methyltransferases. J Biol Chem 279:23892–23899

    Article  PubMed  CAS  Google Scholar 

  • Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ, Barlev NA, Reinberg D (2004) Regulation of p53 activity through lysine methylation. Nature 432:353–360

    Article  PubMed  CAS  Google Scholar 

  • Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ, Kouzarides T (2004) Histone deimination antagonizes arginine methylation. Cell 118:545–553

    Article  PubMed  CAS  Google Scholar 

  • Daniel JA, Pray-Grant MG, Grant PA (2005) Effector proteins for methylated histones: an expanding family. Cell Cycle 4:919–926

    PubMed  CAS  Google Scholar 

  • Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou M-M (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399:491–496

    Article  PubMed  CAS  Google Scholar 

  • Fahrner JA, Eguchi S, Herman JG, Baylin SB (2002) Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res 62:7213–7238

    PubMed  CAS  Google Scholar 

  • Feinberg AP, Cui H, Ohlsson R (2002) DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms. Semin Cancer Biol 12:389–398

    Article  PubMed  CAS  Google Scholar 

  • Fischle W, Wang Y, Allis CD (2003) Binary switches and modification cassettes in histone biology and beyond. Nature 425:475–479

    Article  PubMed  CAS  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Perez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400

    Article  PubMed  CAS  Google Scholar 

  • Freitas MA, Sklenar AR, Parthun MR (2003) Application of mass spectrometry to the identification and quantification of histone post-translational modifications. J Cell Biochem 92:691–700

    Article  CAS  Google Scholar 

  • Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T (2000) DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet 24:88–91

    Article  PubMed  CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:546–567

    Article  PubMed  CAS  Google Scholar 

  • Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A (2005) Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat Chem Biol 1:143–145

    Article  PubMed  CAS  Google Scholar 

  • Grewal SIS, Klar AJS (1996) Chromosomal inheritance of epigenetic states in fission yeast during mitosis and meiosis. Cell 86:95–101

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K (2005) Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol advance online publication, 18 July 2005 (doi:10.1146/annurev.cellbio.21.012704.133518)

    Google Scholar 

  • Hochedlinger K, Blelloch R, Brennan C, Yamada Y, Kim M, Chin L, Jaenisch R (2004) Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev 18:1875–1885

    Article  PubMed  CAS  Google Scholar 

  • Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560

    Article  PubMed  CAS  Google Scholar 

  • Jacobson RH, Ladurner AG, King DS, Tjian R (2000) Structure and function of a human TAFII250 double bromodomain module. Science 288:1422–1425

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch R, Hochedlinger K, Eggan K (2005) Nuclear cloning, epigenetic reprogramming and cellular differentiation. Novartis Found Symp 265:107–118

    Article  PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y-h, Bressler J, Beaudet AL (2004) Epigenetics and human disease. Annu Rev Genomics Hum Genet 5:479–510

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  PubMed  CAS  Google Scholar 

  • Kirschmann DA, Lininger RA, Gardner LM, Seftor EA, Odero VA, Ainsztein AM, Earnshaw WC, Wallrath LL, Hendrix MJ (2000) Downregulation of HP1Hs? expression Is associated with the metastatic phenotype in breast cancer. Cancer Res 60:3359–3363

    PubMed  CAS  Google Scholar 

  • Klochendler-Yeivin A, Muchardt C, Yaniv M (2002) SWI/SNF chromatin remodeling and cancer. Curr Opin Genet Dev 12:73–79

    Article  PubMed  CAS  Google Scholar 

  • Kuzmichev A, Jenuwein T, Tempst P, Reinberg D (2004) Different Ezh2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell 14:183–193

    Article  PubMed  CAS  Google Scholar 

  • Lachner M, O’Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116:2117–2124

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B et al. (International Human Genome Sequencing Consortium) (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649

    Article  PubMed  CAS  Google Scholar 

  • Lippman Z, Martienssen R (2004) The role of RNA interference in heterochromatic silencing. Nature 431:364–370

    Article  PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2. 8 Å resolution. Nature 389:251–260

    Article  PubMed  CAS  Google Scholar 

  • Mak W, Nesterova TB, de Napoles M, Appanah R, Yamanaka S, Otte AP, Brockdorff N (2004) Reactivation of the paternal X chromosome in early mouse embryos. Science 303:666–669

    Article  PubMed  CAS  Google Scholar 

  • Marks PA, Jiang X (2005) Histone deacetylase inhibitors in programmed cell death and cancer therapy. Cell Cycle 4:549–551

    PubMed  CAS  Google Scholar 

  • Marks PA, Richon VM, Miller T, Kelly WK (2004) Histone deacetylase inhibitors. Adv Cancer Res 91:137–168

    Article  PubMed  CAS  Google Scholar 

  • Maurer-Stroh S, Dickens NJ, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting CP (2003) The tudor domain ‘royal family’: tudor, plant agenet, chromo, PWWP and MBT domains. Trends Biochem Sci 28:69–74

    Article  PubMed  CAS  Google Scholar 

  • Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, Gunther T, Buettner R, Schule R (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature advance online publication, 3 August 2005 (doi:10.1038/nature04020)

    Google Scholar 

  • Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14:R47–R58

    Article  PubMed  CAS  Google Scholar 

  • Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    Article  PubMed  CAS  Google Scholar 

  • Narlikar GJ, Fan H-Y, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487

    Article  PubMed  CAS  Google Scholar 

  • Ng HH, Feng Q, Wang H, Erdjument-Bromage H, Tempst P, Zhang Y, Struhl K (2002) Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 16:1518–1527

    Article  PubMed  CAS  Google Scholar 

  • Nguyen CT, Weisenberger DJ, Velicescu M, Gonzales FA, Lin JC, Liang G, Jones PA (2002) Histone H3-Lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-Aza-2’-deoxycytidine. Cancer Res 62:6456–6461

    PubMed  CAS  Google Scholar 

  • Nishioka K, Rice JC, Sarma K, Erdjument-Bromage H, Werner J, Wang Y, Chuikov S, Valenzuela P, Tempst P, Steward R, Lis JT, Allis CD, Reinberg D (2002) PR-SET7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell 9:1201–1213

    Article  PubMed  CAS  Google Scholar 

  • Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM, Su L, Xu G, Zhang Y (2005) hDOT1L links histone methylation to leukemogenesis. Cell 121:167–178

    Article  PubMed  CAS  Google Scholar 

  • Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E (2004) Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303:644–649

    Article  PubMed  CAS  Google Scholar 

  • Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337

    Article  PubMed  CAS  Google Scholar 

  • Peters AH, Kubicek S, Mechtler K, O’Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y, Martens JH, Jenuwein T (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12:1577–1589

    Article  PubMed  CAS  Google Scholar 

  • Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12:1591–1598

    Article  PubMed  CAS  Google Scholar 

  • Rideout WM III, Eggan K, Jaenisch R (2001) Nuclear cloning and epigenetic reprogramming of the genome. Science 293:1093–1098

    Article  PubMed  CAS  Google Scholar 

  • Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Annu Rev Genet 38:413–443

    Article  PubMed  CAS  Google Scholar 

  • Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP (2000) DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25:338–342

    Article  PubMed  CAS  Google Scholar 

  • Rountree MR, Bachman KE, Baylin SB (2000) DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25:269–277

    Article  PubMed  CAS  Google Scholar 

  • Sanders SL, Portoso M, Mata J, Bahler J, Allshire RC, Kouzarides T (2004) Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119:603–614

    Article  PubMed  CAS  Google Scholar 

  • Santos F, Peters AH, Otte AP, Reik W, Dean W (2005) Dynamic chromatin modifications characterize the first cell cycle in mouse embryos. Dev Biol 280:225–236

    Article  PubMed  CAS  Google Scholar 

  • Santos F, Zakhartchenko V, Stojkovic M, Peters A, Jenuwein T, Wolf E, Reik W, Dean W (2003) Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 13:1116–1121

    Article  PubMed  CAS  Google Scholar 

  • Sarma K, Reinberg D (2005) Histone variants meet their match. Nat Rev Mol Cell Biol 6:139–149

    Article  PubMed  CAS  Google Scholar 

  • Sarmento OF, Digilio LC, Wang Y, Perlin J, Herr JC, Allis CD, Coonrod SA (2004) Dynamic alterations of specific histone modifications during early murine development. J Cell Sci 117:4449–4459

    Article  PubMed  CAS  Google Scholar 

  • Schneider R, Bannister AJ, Kouzarides T (2002) Unsafe SETs: histone lysine methyltransferases and cancer. Trends Biochem Sci 27:396–402

    Article  PubMed  CAS  Google Scholar 

  • Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18:1251–1262

    Article  PubMed  CAS  Google Scholar 

  • Schreiber SL, Bernstein BE (2002) Signaling network model of chromatin. Cell 111:771–778

    Article  PubMed  CAS  Google Scholar 

  • Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani SK (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262–1266

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    Article  PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  • Tamaru H, Selker EU (2001) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414:277–283

    Article  PubMed  CAS  Google Scholar 

  • Trewick SC, McLaughlin PJ, Allshire RC (2005) Methylation: lost in hydroxylation? EMBO Rep 6:315–320

    Article  PubMed  CAS  Google Scholar 

  • Turner BM (2000) Histone acetylation and an epigenetic code. BioEssays 22:836–845

    Article  PubMed  CAS  Google Scholar 

  • Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M (2004) Stem cells and cancer: the Polycomb connection. Cell 118:409–418

    Article  PubMed  CAS  Google Scholar 

  • Van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH, Braat DD, van der Vlag J, de Boer P (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122:1008–1022

    Article  PubMed  CAS  Google Scholar 

  • Van Holde KE (1988) Chromatin. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Van Leeuwen F, Gafken PR, Gottschling DE (2002) Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109:745–756

    Article  PubMed  Google Scholar 

  • Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y, Roeder RG, Clarke S, Stallcup MR, Allis CD, Coonrod SA (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306:279–283

    Article  PubMed  CAS  Google Scholar 

  • Waterston RH et al. (Mouse Genome Sequencing Consortium) (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  • Williams N (2003) Death of Dolly marks cloning milestone. Curr Biol 13:R209–R10

    Article  PubMed  CAS  Google Scholar 

  • Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X, Burlingame AL, Roeder RG, Brivanlou AH, Allis CD (2005) WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121:859–872

    Article  PubMed  CAS  Google Scholar 

  • Xiao B, Jing C, Kelly G, Walker PA, Muskett FW, Frenkiel TA, Martin SR, Sarma K, Reinberg D, Gamblin SJ, Wilson JR (2005) Specificity and mechanism of the histone methyltransferase Pr-Set7. Genes Dev 19:1444–1454

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Zhang K, Grunstein M (2005) Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121:375–385

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Ai X, Eugeni EE, Zhang L, Carpenter LR, Jelinek MA, Freitas MA, Parthun MR (2005) Histone H4 lysine 91 acetylation: a core domain modification associated with chromatin assembly. Mol Cell 18:123–130

    Article  PubMed  CAS  Google Scholar 

  • Yoo CB, Cheng JC, Jones PA (2004) Zebularine: a new drug for epigenetic therapy. Biochem Soc Trans 32:910–912

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Yang Z, Khan SI, Horton JR, Tamaru H, Selker EU, Cheng X (2003) Structural basis for the product specificity of histone lysine methyltransferases. Mol Cell 12:177–185

    Article  PubMed  Google Scholar 

  • Zhou J, Giannakakou P (2005) Targeting microtubules for cancer chemotherapy. Curr Med Chem Anti-Canc Agents 5:65–71

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kubicek, S. et al. (2006). The Role of Histone Modifications in Epigenetic Transitions During Normal and Perturbed Development. In: Berger, S.L., Nakanishi, O., Haendler, B. (eds) The Histone Code and Beyond. Ernst Schering Research Foundation Workshop, vol 57. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-37633-X_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-37633-X_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27857-3

  • Online ISBN: 978-3-540-37633-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics