Skip to main content

Fast Atom Bombardment

  • Chapter
Mass Spectrometry
  • 2450 Accesses

Abstract

When particles of kiloelectronvolt kinetic energy are impinging on a surface, they cause the ejection of neutrals and secondary ions from that surface. Secondary ion mass spectrometry (SIMS) employing the sputtering effects of a beam of impacting ions on bulk, inorganic materials, [1–3] 252 Cf plasma desorption (PD) time-of-flight (TOF) mass spectrometry effecting desorption/ionization of biomolecules by impact of single megaelectronvolt nuclear fission fragments, [4–6] and molecular beam solid analysis (MBSA) using energetic neutrals [7,8] had already been known when SIMS was applied to organic solids for the first time. [9,10] However, the organic surfaces tended to cause electrostatic charging upon ion impact, thereby disturbing the ion source potentials. Employing a beam of energetic neutral atoms in analogy to the MBSA technique circumvented such problems and gave an impetus to the further development of this promising method. [11,12] The term fast atom bombardment (FAB) was coined [11–13] and prevailed. [7] It turned out that intact molecular or quasimolecular ions could be generated even in case of highly polar compounds that were definitely not candidates for electron ionization (EI, Chaps. 5, 6) or chemical ionization (CI, Chap. 7). Those FAB spectra still suffered from rapid radiolytic decomposition of the samples upon irradiation and from the comparatively harsh conditions of desorption/ionization. The use of a liquid matrix where the analyte was dissolved for analysis brought the awaited improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference List

  1. Benninghoven, A.; Kirchner, F. The Energy Distribution of Atomized Neutral and Charged Products. Z Naturforsch. 1963, 18A, 1008–1010.

    CAS  Google Scholar 

  2. Honig, R.E. The Development of Secondary Ion-MS (SIMS): a Retrospective. Int. J. Mass Spectrom. Ion Proc. 1985, 66, 31–54.

    Article  CAS  Google Scholar 

  3. Honig, R.E. Stone-Age Mass Spectrometry: the Beginnings of “SIMS” at RCA Laboratories, Princeton. Int. J. Mass Spectrom. Ion Proc. 1995, 143, 1–10.

    Article  CAS  Google Scholar 

  4. Macfarlane, R.D.; Torgerson, D.F. Cali-fornium-252-Plasma Desorption Time-of-Flight-MS. Int. J. Mass Spectrom. Ion Phys. 1976, 21, 81–92.

    Article  CAS  Google Scholar 

  5. Macfarlane, R.D.; Torgerson, D.F. Californium-252 Plasma Desorption Mass Spectroscopy. Science 1976, 191, 920–925.

    Article  CAS  Google Scholar 

  6. Macfarlane, R. D. Ion Formation from Organic Solids: High Energy Heavy-ion Induced Desorption. Benninghoven, A., ed., Springer Series in Chemical Physics 25, 32–46, 1983, Springer-Verlag Heidelberg.

    Chapter  Google Scholar 

  7. Devienne, F.M.; Roustan, J.-C. “Fast Atom Bombardment” — a Rediscovered Method for Mass Spectrometry. Org. Mass Spectrom. 1982, 17, 173–181.

    Article  CAS  Google Scholar 

  8. Devienne, F.M. Different Uses of High Energy Molecular Beams. Entropie 1967, 18, 61–67.

    Google Scholar 

  9. Barber, M.; Vickerman, J.C.; Wolstenholme, J. Secondary Ion Mass Spectra of Some Simple Organic Molecules. J. Chem. Soc, Faraday Trans. 1 1980, 76, 549–559.

    Article  CAS  Google Scholar 

  10. Benninghoven, A. Ion Formation from Organic Solids: Secondary ion-MS of organic compounds. Benninghoven, A., ed., Springer Series in Chemical Physics 25, 64–89, 1983, Springer-Verlag Heidelberg.

    Chapter  Google Scholar 

  11. Barber, M.; Bordoli, R.S.; Sedgwick, R.D.; Tyler, A.N. FAB of Solids as an Ion Source in Mass Spectrometry. Nature 1981, 293, 270–275.

    Article  CAS  Google Scholar 

  12. Barber, M.; Bordoli, R.S.; Sedgwick, R.D.; Tyler, A.N. FAB-MS of Cobala-mines. Biomed. Mass Spectrom. 1981, 8, 492–495.

    Article  CAS  Google Scholar 

  13. Surman, D.J.; Vickerman, J.C. FAB Quad-rupole-MS. J. Chem. Soc., Chem. Commun. 1981, 324–325.

    Google Scholar 

  14. Barber, M.; Bordoli, R.S.; Sedgwick, R.D.; Tyler, A.N.; Bycroft, B.W. FAB-MS of Bleomycin A2 and B2 and Their Metal Complexes. Biochem. Biophys. Res. Commun. 1981, 101, 632–638.

    Article  CAS  Google Scholar 

  15. Morris, H.R.; Panico, M.; Barber, M.; Bordoli, R.S.; Sedgwick, R.D.; Tyler, A.N. FAB: a New Mass Spectrometric Method for Peptide Sequence Analysis. Biochem. Biophys. Res. Commun. 1981, 101, 623–631.

    Article  CAS  Google Scholar 

  16. Barber, M.; Bordoli, R.S.; Elliott, G.J.; Sedgwick, R.D.; Tyler, A.N.; Green, B.N. FAB-MS of Bovine Insulin and Other Large Peptides.J. Chem. Soc., Chem. Commun. 1982, 936–938.

    Google Scholar 

  17. Barber, M.; Bordoli, R.S.; Elliott, G.J.; Sedgwick, R.D.; Tyler, A.N. FAB-MS. Anal. Chem. 1982, 54, 645A–657A.

    Article  CAS  Google Scholar 

  18. Meili, J.; Seibl, J. Matrix Effects in FAB-MS. Int. J. Mass Spectrom. Ion Phys. 1983, 46, 367–370.

    Article  CAS  Google Scholar 

  19. Gower, L.J. Matrix Compounds for FAB-MS. Biomed. Mass Spectrom. 1985, 72, 191–196.

    Article  Google Scholar 

  20. De Pauw, E.; Agnello, A.; Derwa, F. Liquid Matrices for Liquid Secondary Ion-MS-FAB [LSIMS-FAB]: an Update. Mass Spectrom. Rev. 1991, 10, 283–301.

    Article  Google Scholar 

  21. Aberth, W.; Straub, K.M.; Burlingame, A.L. Secondary Ion-MS With Cesium Ion Primary Beam and Liquid Target Matrix for Analysis of Bioorganic Compounds. Anal. Chem. 1982, 54, 2029–2034.

    Article  CAS  Google Scholar 

  22. Sundqvist, B.U.R. Desorption Methods in-MS. Int. J. Mass Spectrom. Ion Proc. 1992, 118/119, 265–287.

    Article  Google Scholar 

  23. Sunner, J. Ionization in Liquid Secondary Ion-MS (LSIMS). Org. Mass Spectrom. 1993, 28, 805–823.

    Article  CAS  Google Scholar 

  24. Busch, K.L. Desorption Ionization-MS. J. Mass Spectrom. 1995, 30, 233–240.

    Article  CAS  Google Scholar 

  25. Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications; 1st ed.; Benninghoven, A.; Werner, H.W.; Rudenauer, F.G., editors; Wiley Interscience: New York, 1986.

    Google Scholar 

  26. Wilson, R.G.; Stevie, F.A.; Magee, C.W. Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis; John Wiley & Sons: Chichester, 1989.

    Google Scholar 

  27. Becker, S.; Dietze, H.-J. State-of-the-Art in Inorganic Mass Spectrometry for Analysis of High-Purity Materials. Int. J. Mass Spectrom. 2003, 228, 127–150.

    Article  CAS  Google Scholar 

  28. Miller, J.M. FAB-MS of Organometallic, Coordination, and Related Compounds. Mass Spectrom. Rev. 1989, 9, 319–347.

    Article  Google Scholar 

  29. Franks, J.; Ghander, A.M. Saddle Field Ion Source of Spherical Configuration for Etching and Thinning Applications. Vacuum 1974, 24, 489–491.

    Article  CAS  Google Scholar 

  30. Alexander, A.J.; Hogg, A.M. Characterization of a Saddle-Field Discharge Gun for FABMS Using Different Discharge Vapors. Int. J. Mass Spectrom. Ion Proc. 1986, 69, 297–311.

    Article  CAS  Google Scholar 

  31. Boggess, B.; Cook, K.D. Determination of Flux From a Saddle Field FAB Gun. J. Am. Soc. Mass Spectrom. 1994, 5, 100–105.

    Article  CAS  Google Scholar 

  32. Barber, M.; Bordoli, R.S.; Sedgwick, R.D.; Tyler. A.N. FAB of Solids: a New Ion Source for Mass Spectrometry. J. Chem. Soc., Chem. Commun. 1981, 325–327.

    Google Scholar 

  33. McDowell, R.A.; Morris, H.R. FAB-MS: Biological Analysis Using an Ion Gun. Int. J. Mass Spectrom. Ion Phys. 1983, 46, 443–446.

    Article  CAS  Google Scholar 

  34. Morris, H.R.; Panico, M.; Haskins, N.J. Comparison of Ionization Gases in FAB Mass Spectra. Int. J. Mass Spectrom. Ion Phys. 1983, 46, 363–366.

    Article  CAS  Google Scholar 

  35. Fenselau, C. Ion Formation from Organic Solids: FAB. Benninghoven, A., ed., Springer Series in Chemical Physics 25, 90–100, 1983, Springer-Verlag Heidelberg.

    Chapter  Google Scholar 

  36. Stoll, R.; Schade, U.; Röllgen, F.W.; Giessmann, U.; Barofsky, D.F. Fast Atom and Ion Bombardment of Organic Samples Using Mercury. Int. J. Mass Spectrom. Ion Phys. 1982, 43, 227–229.

    Article  CAS  Google Scholar 

  37. Burlingame, A. L.; Aberth, W. Ion Formation from Organic Solids: Use of a Cesium Primary Beam for Liquid SIMS Analysis of Bio-Organic Compounds. Benninghoven, A., ed., Springer Series in Chemical Physics 25, 167–171, 1983, Springer-Verlag Heidelberg.

    Google Scholar 

  38. Burlingame, A.L. Comparison of Three Geometries for a Cesium Primary Beam Liquid Secondary Ion-MS Source. Anal. Chem. 1984, 56, 2915–2918.

    Article  Google Scholar 

  39. Aberth, W.; Burlingame, A.L. Comparison of Three Geometries for a Cesium Primary Beam Liquid Secondary Ion-MS Source. Anal. Chem. 1984, 56, 2915–2918.

    Article  CAS  Google Scholar 

  40. Aberth, W.H.; Burlingame, A.L. Effect of Primary Beam Energy on the Secondary-Ion Sputtering Efficiency of Liquid Secondary-Ionization-MS in the 5–30-KeV Range. Anal. Chem. 1988, 60, 1426–1428.

    Article  CAS  Google Scholar 

  41. McEwen, C.N.; Hass, J.R. Negative Gold Ion Gun for Liquid Secondary Ion-MS. Anal. Chem. 1985, 57, 890–892.

    Article  CAS  Google Scholar 

  42. Katakuse, I.; Nakabushi, H.; Ichihara, T.; Sakurai, T.; Matsuo, T.; Matsuda, H. Generation and Detection of Cluster Ions [(Csl) N-Cs]+ Ranging Up to m/z = 90,000. Int. J. Mass Spectrom. Ion Proc. 1984, 57. 239–243.

    Article  CAS  Google Scholar 

  43. Katakuse, I.; Nakabushi, H.; Ichihara, T.: Sakurai, T.; Matsuo, T.; Matsuda, H. Metastable Decay of Cesium Iodide Cluster Ions. Int. J. Mass Spectrom. Ion Proc. 1984, 62, 17–23.

    Article  CAS  Google Scholar 

  44. Sim, P.G.; Boyd, R.K. Calibration and Mass Measurement in Negative-Ion FABMS. Rapid Commun. Mass Spectrom. 1991, 5, 538–542.

    Article  CAS  Google Scholar 

  45. Rapp, U.; Kaufmann, H.; Höhn, M.; Pesch, R. Exact Mass Determinations Under FAB Conditions. Int. J. Mass Spectrom. Ion Phys. 1983, 46, 371–374.

    Article  CAS  Google Scholar 

  46. Sunner, J. Role of Ion-Ion Recombination for Alkali Chloride Cluster Formation in Liquid Secondary Ion-MS.J. Am. Soc. Mass Spectrom. 1993, 4, 410–418.

    Article  CAS  Google Scholar 

  47. Cao, Y.; Haseltine, J.N.; Busch, K.L. Double Cationization With Alkali Ions in Liquid Secondary Ion-MS. Spectroscopy Lett. 1996, 29, 583–589.

    Article  CAS  Google Scholar 

  48. Todd, P.J. Secondary Ion Emission From Glycerol Under Continuous and Pulsed Primary Ion Current. Org. Mass Spectrom. 1988, 25, 419–424.

    Article  Google Scholar 

  49. Schröder, E.; Münster, H.; Budzikiewicz, H. Ionization by FAB — a Chemical Ionization (Matrix) Process Ion the Gas Phase? Org. Mass Spectrom. 1986, 21, 707–715.

    Article  Google Scholar 

  50. Münster, H.; Theobald, F.; Budzikiewicz, H. The Formation of a Matrix Plasma in the Gas Phase Under FAB Conditions. Int. J. Mass Spectrom. Ion Proc. 1987, 79, 73–79.

    Article  Google Scholar 

  51. Rosen, R.T.; Hartmann, T.G.; Rosen, J.D.; Ho, C.-T. Fast-Atom-Bombardment Mass Spectra of Low-Molecular-Weight Alcohols and Other Compounds. Evidence for a Chemical-Ionization Process in the Gas Phase. Rapid Commun. Mass Spectrom. 1988, 2, 21–23.

    Article  CAS  Google Scholar 

  52. Miller, J.M.; Balasanmugam, K. FAB-MS of Some Nonpolar Compounds. Anal. Chem. 1989, 67, 1293–1295.

    Article  Google Scholar 

  53. Benninghoven, A. Organic Secondary Ion-MS (SIMS) and Its Relation to FAB (FAB). Int. J. Mass Spectrom. Ion Phys. 1983, 46, 459–462.

    Article  CAS  Google Scholar 

  54. van Breemen, R.B.; Snow, M.; Cotter, R.J. Time-Resolved Laser Desorption-MS. I. Desorption of Preformed Ions. Int. J. Mass Spectrom. Ion Phys. 1983, 49, 35–50.

    Article  Google Scholar 

  55. Musselman, B.; Watson, J.T.; Chang, CK. Direct Evidence for Preformed Ions of Porphyrins in the Solvent Matrix for FAB-MS. Org. Mass Spectrom. 1986, 21, 215–219.

    Article  CAS  Google Scholar 

  56. Shiea, J.; Sunner, J. The Acid Effect in FAB. Org. Mass Spectrom. 1991, 26, 38–44.

    Article  CAS  Google Scholar 

  57. Todd, P.J. Solution Chemistry and Secondary Ion Emission From Amine-Glycerol Solutions. J. Am. Soc. Mass Spectrom. 1991, 2, 33–44.

    Article  CAS  Google Scholar 

  58. Wong, S.S.; Röllgen, F.W. Sputtering of Large Molecular Ions by Low Energy Particle Impact. Nulc. lnstrum. Methods Phys. Res., B 1986, B14, 436–447.

    Article  CAS  Google Scholar 

  59. Baczynskyi, L. New Matrices for FAB-MS. Adv. Mass Spectrom. 1985, 10, 1611–1612.

    Google Scholar 

  60. De Pauw, E.; Agnello, A.; Derwa, F. Liquid Matrices for Liquid Secondary Ion-MS. Mass Spectrom. Rev. 1986, 5, 191–212.

    Article  Google Scholar 

  61. Meili, J.; Seibl, J. A New Versatile Matrix for FAB Analysis. Org. Mass Spectrom. 1984, 79, 581–582.

    Article  Google Scholar 

  62. Barber, M.; Bell, D.; Eckersley, M.; Morris, M.; Tetler, L. The Use of M-Nitrobenzyl Alcohol As a Matrix in FAB-MS. Rapid Commun. Mass Spectrom. 1988, 2, 18–21.

    Article  CAS  Google Scholar 

  63. Aubagnac, J.-L. Use of M-Nitrobenzyl Alcohol As a Matrix in Fast-Atom-Bombardment Negative-Ion Mass Spectrometry of Polar Compounds. Rapid Commun. Mass Spectrom. 1990, 4, 114–116.

    Article  CAS  Google Scholar 

  64. Dube, G. The Behavior of Aromatic Hydrocarbons Under FAB. Org. Mass Spectrom. 1984, 19, 242–243.

    Article  CAS  Google Scholar 

  65. Abdul-Sada, A.K.; Greenway, A.M.; Seddon, K.R. The Extent of Aggregation of Air-Sensitive Alkyllithium Compounds As Determined by Fast-Atom-Bombardment-MS.J. Organomet. Chem. 1989, 375, C17–C19.

    Article  CAS  Google Scholar 

  66. Abdul-Sada, A.K.; Greenway, A.M.; Seddon, K.R. The Application of Liquid Paraffin and 3,4-Dimethoxybenzyl Alcohol As Matrix Compounds to FAB-MS. Eur. Mass Spectrom. 1996, 2, 77–78.

    Article  CAS  Google Scholar 

  67. Bandini, A.L.; Banditelli, G.; Minghetti, G.; Pelli, B.; Traldi, P. FAB Induced De-composition Pattern of the Gold(III) Bis(Carbene) Complex [[(p-MeC6H4NH)(EtO)C]2AuI2]ClO4, a Retrosynthetic Process? Organometallics 1989, 8, 590–593.

    Article  CAS  Google Scholar 

  68. Dobson, J.C.; Taube, H. Coordination Chemistry and Redox Properties of Poly-pyridyl Complexes of Vanadium(II). Inorg. Chem. 1989, 28, 1310–1315.

    Article  CAS  Google Scholar 

  69. Leibman, C.P.; Todd, P.J.; Mamantov, G. Enhanced Positive Secondary Ion Emission From Substituted Polynuclear Aromatic Hydrocarbon/Sulfuric Acid Solutions. Org. Mass Spectrom. 1988, 23, 634–642.

    Article  CAS  Google Scholar 

  70. Staempfli, A.A.; Schlunegger, U.P. A New Matrix for FAB Analysis of Corrins. Rapid Commun. Mass Spectrom. 1991, 5, 30–31.

    Article  CAS  Google Scholar 

  71. Visentini, J.; Nguyen, P.M.; Bertrand, M.J. The Use of 4-Hydroxybenzenesulfonic Acid As a Reduction-Inhibiting Matrix in Liquid Secondary-Ion-MS. Rapid Commun. Mass Spectrom. 1991, 5, 586–590.

    Article  CAS  Google Scholar 

  72. Gower, L.J. Matrix Compounds for FAB: a Further Review. Adv. Mass Spectrom. 1985, 70, 1537–1538.

    Google Scholar 

  73. Rozenski, J.; Herdewijn, P. The Effect of Addition of Carbon Powder to Samples in Liquid Secondary Ion-MS: Improved Ionization of Apolar Compounds. Rapid Commun. Mass Spectrom. 1995, 9, 1499–1501.

    Article  CAS  Google Scholar 

  74. Huang, Z.-H.; Shyong, B.-J.; Gage, D.A.; Noon, K.R.; Allison, J. N-Alkylnicotinium Halides: a Class of Cationic Matrix Additives for Enhancing the Sensitivity in Negative Ion FAB-MS of Poly anionic Analytes. J. Am. Soc. Mass Spectrom. 1994, 5, 935–948.

    Article  CAS  Google Scholar 

  75. Shiea, J.T.; Sunner, J. Effects of Matrix Viscosity on FAB Spectra. Int. J. Mass Spectrom. Ion Proc. 1990, 96, 243–265.

    Article  CAS  Google Scholar 

  76. Field, F.H. FAB Study of Glycerol: Mass Spectra and Radiation Chemistry. J. Phys. Chem. 1982, 56, 5115–5123.

    Article  Google Scholar 

  77. Caldwell, K.A.; Gross, M.L. Origins and Structures of Background Ions Produced by FAB of Glycerol. J. Am. Soc. Mass Spectrom. 1994, 5, 72–91.

    Article  CAS  Google Scholar 

  78. Busch, K.L. Chemical Noise in-MS. Part I. Spectroscopy 2002, 17, 32–37.

    CAS  Google Scholar 

  79. Busch, K.L. Chemical Noise in Mass Spectrometry. Part II — Effects of Choices in Ionization Methods on Chemical Noise. Spectroscopy 2003, 18, 56–62.

    CAS  Google Scholar 

  80. Reynolds, J.D.; Cook, K.D. Improving FAB Mass Spectra: the Influence of Some Controllable Parameters on Spectral Quality. J. Am. Soc. Mass Spectrom. 1990, 1, 149–157.

    Article  CAS  Google Scholar 

  81. Barber, M.: Bell, D.J.: Morris, M.: Tetler, L.W.: Woods, M.D.: Monaghan, J.J.: Morden, W.E. The Interaction of M-Nitrobenzyl Alcohol With Compounds Under Fast-Atom-Bombardment Conditions. Rapid Commun. Mass Spectrom. 1988, 2, 181–183.

    Article  CAS  Google Scholar 

  82. Tuinman, A.A.: Cook, K.D. FAB-Induced Condensation of Glycerol With Ammonium Surfactants. I. Regioselectivity of the Adduct Formation. J. Am. Soc. Mass Spectrom. 1992, 5, 318–325.

    Article  Google Scholar 

  83. Aubagnac, J.-L.: Claramunt, R.-M.: Sanz, D. Reduction Phenomenon on the FAB Mass Spectra of N-Aminoazoles With a Glycerol Matrix. Org. Mass Spectrom. 1990, 25, 293–295.

    Article  CAS  Google Scholar 

  84. Murthy, V.S.: Miller, J.M. Suppression Effects on a Reduction Process in FAB-MS. Rapid Commun. Mass Spectrom. 1993, 7, 874–881.

    Article  CAS  Google Scholar 

  85. Aubagnac, J.-L.; Gilles, I.; Lazaro, R.; Claramunt, R.-M.; Gosselin, G.; Martinez, J. Reduction Phenomenon in Frit FAB-MS. Rapid Commun. Mass Spectrom. 1995, 9, 509–511.

    Article  CAS  Google Scholar 

  86. Aubagnac, J.-L.; Gilles, I.; Claramunt, R.M.; Escolastico, C; Sanz, D.; Elguero, J. Reduction of Aromatic Fluorine Compounds in FAB-MS. Rapid Commun. Mass Spectrom. 1995, 9, 156–159.

    Article  CAS  Google Scholar 

  87. Théberge, R.; Bertrand, M.J. Beam-Induced Dehalogenation in LSIMS: Effect of Halogen Type and Matrix Chemistry.J. Mass Spectrom. 1995, 30, 163–171.

    Article  Google Scholar 

  88. Théberge, R.; Bertrand, M.J. An Investigation of the Relationship Between Ana-lyte Surface Concentration and the Extent of Beam-Induced Dehalogenation in Liquid Secondary Ion-MS. Rapid Commun. Mass Spectrom. 1998, 72, 2004–2010.

    Article  Google Scholar 

  89. Vetter, W.: Meister, W. FAB Mass Spectrum of β-Carotene. Org. Mass Spectrom. 1985, 20, 266–267.

    Article  CAS  Google Scholar 

  90. Nakata, H.; Tanaka, K. Structural and Substituent Effects on M+ Vs. [M+H]+ Formation in FAB Mass Spectra of Simple Organic Compounds. Org. Mass Spectrom. 1994, 29, 283–288.

    Article  CAS  Google Scholar 

  91. Moon, D.-C; Kelly, J.A. A Simple Desalting Procedure for FAB-MS. Biomed. Environ. Mass Spectrom. 1988, 77, 229–237.

    Article  Google Scholar 

  92. Prókai, L.; Hsu, B.-H.; Farag, H.; Bodor, N. Desorption Chemical Ionization, Thermospray, and FAB-MS of Dihydropyri-dine — Pyridinium Salt-Type Redox Systems. Anal. Chem. 1989, 67, 1723–1728.’

    Article  Google Scholar 

  93. Kolli, V.S.K.; York, W.S.; Orlando, R. FAB-MS of Carbohydrates Contaminated With Inorganic Salts Using a Crown Ether. J. Mass Spectrom. 1998, 33, 680–682.

    Article  CAS  Google Scholar 

  94. Desiderio, D.M.; Katakuse, I. FAB-MS of Insulin, Insulin A-Chain, Insulin B-Chain. and Glucagon. Biomed. Mass Spectrom. 1984, 11, 55–59.

    Article  CAS  Google Scholar 

  95. Barber, M.; Green, B.N. The Analysis of Small Proteins in the Molecular Weight Range 10–24 kDa by Magnetic Sector Mass Spectrometry. Rapid Commun. Mass Spectrom. 1987, 1, 80–83.

    Article  CAS  Google Scholar 

  96. Frauenkron, M.; Berkessel, A.; Gross, J.H. Analysis of Ruthenium Carbonyl-Porphyrin Complexes: a Comparison of Matrix-Assisted Laser Desorp-tion/Ionization Time-of-Flight, FAB and Field Desorption-MS. Eur. Mass. Spectrom. 1997, 3, 427–438.

    Article  CAS  Google Scholar 

  97. Irngartinger, H.; Altreuther, A.; Sommerfeld, T.; Stojanik, T. Pyramidalization in Derivatives of Bicyclo[5.1.0]Oct-1(7)-Enes and 2,2,5,5-Tetramethylbicyclo-[4.1.0]Hept-1(6)-Enes. Eur. J. Org. Chem. 2000, 4059–4070.

    Google Scholar 

  98. Barber, M.; Bordoli, R.S.; Elliott, G.J.; Tyler, A.N.; Bill, J.C.; Green, B.N. FAB-MS: a Mass Spectral Investigation of Some of the Insulins. Biomed. Mass Spectrom. 1984, 11, 182–186.

    Article  CAS  Google Scholar 

  99. Rajca, A.; Wongsriratanakul, J.; Rajca, S.; Cerny, R. A Dendritic Macrocyclic Organic Polyradical With a Very High Spin of S = 10. Angew. Chem., Int. Ed. 1998, 37, 1229–1232.

    Article  CAS  Google Scholar 

  100. Andersson, T.; Westman, G.; Stenhagen, G.; Sundahl, M.; Wennerström, O. A Gas Phase Container for C60; a γ-Cyclodextrin Dimer. Tetrahedron Lett. 1995, 36, 597–600.

    Article  CAS  Google Scholar 

  101. Giesa, S.; Gross, J.H.; Krätschmer, W.; Gleiter, R. Experiments Towards an Analytical Application of Host-Guest Complexes of [60] Fullerene and Its Derivatives. Eur. Mass. Spectrom. 1998, 4, 189–196.

    Article  Google Scholar 

  102. Juo, C.-G.; Shiu, L.-L.; Shen, C.K.F.; Luh, T.-J.; Her, G.-R. Analysis of C60 Derivatives by FAB-MS As γ-Cyclodextrin Inclusion Complexes. Rapid Commun. Mass Spectrom. 1995, 9, 604–608.

    Article  CAS  Google Scholar 

  103. Vincenti, M. Host-Guest Chemistry in the Mass Spectrometer. J. Mass Spectrom. 1995, 30, 925–939.

    Article  CAS  Google Scholar 

  104. Morgan, R.P.; Reed, M.L. FAB Accurate Mass Measurement. Org. Mass Spectrom. 1982, 17, 537.

    Article  CAS  Google Scholar 

  105. Münster, H.; Budzikiewicz, H.; Schröder, E. A Modified Target for FAB Measurements. Org. Mass Spectrom. 1987, 22, 384–385.

    Article  Google Scholar 

  106. Gross, J.H.; Giesa, S.; Krätschmer, W. Negative-Ion Low-Temperature FAB-MS of Monomeric and Dimeric [60]Fullerene Compounds. Rapid Commun. Mass Spectrom. 1999, 13, 815–820.

    Article  CAS  Google Scholar 

  107. Caprioli, R.M.; Fan, T.; Cottrell, J.S. A Continuous-Flow Sample Probe for FAB-MS. Anal. Chem. 1986, 58, 2949–2954.

    Article  CAS  Google Scholar 

  108. Caprioli, R.M.; Fan, T. High Sensitivity Mass Spectrometric Determination of Peptides: Direct Analysis of Aqueous Solutions. Biochem. Biophys. Res. Commun. 1986, 141, 1058–1065.

    Article  CAS  Google Scholar 

  109. Ito, Y.; Takeuchi, T.; Ishii, D.; Goto, M. Direct Coupling of Micro High-Performance Liquid Chromatography With FAB-MS. J. Chromatogr. 1985, 346, 161–166.

    Article  CAS  Google Scholar 

  110. Takeuchi, T.; Watanabe, S.; Kondo, N.; Ishii, D.; Goto, M. Improvement of the Interface for Coupling of FAB-MS and Micro High-Performance Liquid Chromatography. J. Chromatogr. 1988, 435, 482–488.

    Article  CAS  Google Scholar 

  111. Siethoff, C; Nigge, W.; Linscheid, M.W. The Determination of Ifosfamide in Human Blood Serum Using LC/MS. Fresenius J. Anal. Chem. 1995, 352, 801–805.

    Article  CAS  Google Scholar 

  112. Suter, M.J.F.; Caprioli, R.M. An Integral Probe for Capillary Zone Electrophore-sis/Continuous-Flow FAB-MS.J. Am. Soc. Mass Spectrom. 1992, 3, 198–206.

    Article  CAS  Google Scholar 

  113. Caprioli, R.M. Continuous-Flow FAB-MS. Anal. Chem. 1990, 62, 477A-485A.

    CAS  Google Scholar 

  114. Continuous-Flow FAB Mass Spectrometry; Caprioli, R.M., editor; John Wiley & Sons: Chichester, 1990.

    Google Scholar 

  115. Caprioli, R.M.; Suter, M.J.F. Continuous-Flow FAB: Recent Advances and Applications. Int. J. Mass Spectrom. Ion Proc. 1992, 115/119, 449–476.

    Google Scholar 

  116. Caprioli, R.M.; Moore, W.T.; Fan, T. Improved Detection of Suppressed Peptides in Enzymie Digests Analyzed by FAB-MS. Rapid Commun. Mass Spectrom. 1987, 1, 15–18.

    Article  CAS  Google Scholar 

  117. Falick, A.M.; Walls, F.C.; Laine, R.A. Cooled Sample Introduction Probe for Liquid Secondary Ionization-MS. Anal. Biochem. 1986, 159, 132–137.

    CAS  Google Scholar 

  118. Jonkman, H.T.; Michl, J. Secondary Ion-MS of Small-Molecule Solids at Cryogenic Temperatures. 1. Nitrogen and Carbon Monoxide. J. Am. Chem. Soc. 1981, 103, 733–737.

    Article  CAS  Google Scholar 

  119. Orth, R.G.; Jonkman, H.T.; Michl, J. Secondary Ion-MS of Small-Molecule Solids at Cryogenic Temperatures. 2. Rare Gas Solids. J. Am. Chem. Soc. 1981, 103, 6026–6030.

    Article  CAS  Google Scholar 

  120. Katz, R.N.; Chaudhary, T.; Field, F.H. Particle Bombardment (FAB) Mass Spectra of Methanol at Sub-Ambient Temperatures. J. Am. Chem. Soc. 1986, 707, 3897–3903.

    Article  Google Scholar 

  121. Katz, R.N.; Chaudhary, T.; Field, F.H. Particle Bombardment (keV) Mass Spectra of Ethylene Glycol, Glycerol, and Water at Sub-Ambient Temperatures. Int. J. Mass Spectrom. Ion Proc. 1987, 78, 85–97.

    Article  CAS  Google Scholar 

  122. Johnstone, R.A.W.; Wiłby, A.H. FAB at Low Temperatures. Part 2. Polymerization in the Matrix. Int. J. Mass Spectrom. Ion Proc. 1989, 89, 249–264.

    Article  CAS  Google Scholar 

  123. Kosevich, M.V.; Czira, G.; Boryak, O.A.; Shelkovsky, V.S.; Vékey, K. Comparison of Positive and Negative Ion Clusters of Methanol and Ethanol Observed by Low Temperature Secondary Ion-MS. Rapid Commun. Mass Spectrom. 1991 , 11, 1411–1416.

    Article  Google Scholar 

  124. Kosevich, M.V.; Czira, G.; Boryak, O.A.; Shelkovsky, V.S.; Vékey, K. Temperature Dependences of Ion Currents of Alcohol Clusters Under Low-Temperature Secondary Ion Mass Spectrometric Conditions. J. Mass Spectrom. 1998, 33, 843–849.

    Article  CAS  Google Scholar 

  125. Magnera, T.F.; David, D.E.; Stulik, D.; Orth, R.G.; Jonkman, H.T.; Michl, J. Production of Hydrated Metal Ions by Fast Ion or Atom Beam Sputtering. Collision-Induced Dissociation and Successive Hydration Energies of Gaseous Cu+ With 1–4 Water Molecules.J. Am. Chem. Soc. 1989, 111, 5036–5043.

    Article  CAS  Google Scholar 

  126. Boryak, O.A.; Stepanov, I.O.; Kosevich, M.V.; Shelkovsky, V.S.; Orlov, V.V.; Blagoy, Y.P. Origin of Clusters. I. Correlation of Low Temperature FAB Mass Spectra With the Phase Diagram of NaCl-Water Solutions. Eur. Mass Spectrom. 1996, 2, 329–339.

    Article  CAS  Google Scholar 

  127. Kosevich, M.V.; Boryak, O.A.; Stepanov, I.O.; Shelkovsky, V.S. Origin of Clusters. II. Distinction of Two Different Processes of Formation of Mixed Metal/Water Clusters Under Low-Temperature FAB. Eur. Mass Spectrom. 1997, 3, 11–17.

    Article  CAS  Google Scholar 

  128. Boryak, O.A.; Kosevich, M.V.; Shelkovsky, V.S.; Blagoy, Y.P. Study of Frozen Solutions of Nucleic Acid Nitrogen Bases by Means of Low Temperature Fast-Atom-Bombardment-MS. Rapid Commun. Mass Spectrom. 1996, 10, 197–199.

    Article  CAS  Google Scholar 

  129. Huang, M.-W.; Chei, H.-L.; Huang, J.P.; Shiea, J. Application of Organic Solvents As Matrixes to Detect Air-Sensitive and Less Polar Compounds Using Low-Temperature Secondary Ion-MS. Anal. Chem. 1999, 71, 2901–2907.

    Article  CAS  Google Scholar 

  130. Hofmann, P.; Volland, M.A.O.; Hansen, S.M.; Eisenträger, F.; Gross, J.H.; Stengel, K. Isolation and Characterization of a Monomeric, Solvent Coordinated Ruthe-nium(II) Carbene Cation Relevant to Olefin Metathesis. J. Organomet. Chem. 2000, 606, 88–92.

    Article  CAS  Google Scholar 

  131. Wang, C.H.; Huang, M.-W.; Lee, C.-Y.; Chei, H.-L.; Huang, J.P.; Shiea, J. Detection of a Thermally Unstable Intermediate in the Wittig Reaction Using Low-Temperature Liquid Secondary Ion and Atmospheric Pressure Ionization-MS. J. Am. Soc. Mass Spectrom. 1998, 9, 1168–1174.

    Article  CAS  Google Scholar 

  132. Giesa, S.; Gross, J.H.; Hull, W.E.; Lebedkin, S.; Gromov, A.; Krätschmer, W.; Gleiter, R. C120OS: the First Sulfur-Containing Dimeric [60]Fullerene Derivative. Chem. Commun. 1999, 465–466.

    Google Scholar 

  133. Gross, J.H. Use of Protic and Aprotic Solvents of High Volatility As Matrixes in Analytical Low-Temperature FAB-MS. Rapid Commun. Mass Spectrom. 1998, 12, 1833–1838.

    Article  CAS  Google Scholar 

  134. König, W.A.; Aydin, M.; Schulze, U.; Rapp, U.; Höhn, M.; Pesch, R.; Kalikhevitch, V.N. Fast-Atom-Bombardment for Peptide Sequencing — a Comparison With Conventional Ionization Techniques. Int. J. Mass Spectrom. Ion Phys. 1983, 46, 403–406.

    Article  Google Scholar 

  135. Caprioli, R.M. Enzymes and Mass Spectrometry: a Dynamic Combination. Mass Spectrom. Rev. 1987, 6, 237–287.

    Article  CAS  Google Scholar 

  136. Caprioli, R.M. Analysis of Biochemical Reactions With Molecular Specificity Using FAB-MS. Biochemistry 1988, 27, 513–521.

    Article  CAS  Google Scholar 

  137. Chait, B.T.; Wang, R.; Beavis, R.C.; Kent, S.B. Protein Ladder Sequencing. Science 1993, 262, 89–92.

    Article  CAS  Google Scholar 

  138. Lehmann, W.D. Massenspektrometrie in der Biochemie; Spektrum Akademischer Verlag: Heidelberg, 1996.

    Google Scholar 

  139. Mass Spectrometry’ of Proteins and Peptides; Chapman, J.R., editor; Humana Press: Totowa, 2000.

    Google Scholar 

  140. Snyder, A.P. Interpreting Protein Mass Spectra; 1st ed.; Oxford University Press: New York, 2000.

    Google Scholar 

  141. Kinter, M.; Sherman, N.E. Protein Sequencing and Identification Using Tandem Mass Spectrometry’; John Wiley & Sons: Chichester, 2000.

    Book  Google Scholar 

  142. Naylor, S.; Findeis, A.F.; Gibson, B.W.; Williams, D.H. An Approach Towards the Complete FAB Analysis of Enzymie Digests of Peptides and Proteins.J. Am. Chem. Soc. 1985, 108, 6359–6363.

    Article  Google Scholar 

  143. Deterding, L.J.; Tomer, K.B.; Wellemans, J.M.Y.; Cerny, R.L.; Gross, M.L. Capillary Electrophoresis/Tandem Mass Spectrometry With Array Detection. Eur. Mass Spectrom. 1999, 5, 33–40.

    Article  CAS  Google Scholar 

  144. Bordaz-Nagy, J.; Despeyroux, D.; Jennings, K.R.; Gaskell, S.J. Experimental Aspects of the Collision-Induced Decomposition of Ions in a Four-Sector Tandem Mass Spectrometer. Org. Mass Spectrom. 1992, 27, 406–415.

    Article  Google Scholar 

  145. Stults, J.T.; Lai, J.; McCune, S.; Wetzel, R. Simplification of High-Energy Collision Spectra of Peptides by Amino-Terminal Derivatization. Anal. Chem. 1993, 65, 1703–1708.

    Article  CAS  Google Scholar 

  146. Biemann, K.; Papyannopoulos, I.A. Amino Acid Sequencing of Proteins. Ace. Chem. Res. 1994, 27, 370–378.

    Article  CAS  Google Scholar 

  147. Papyannopoulos, I.A. The Interpretation of Collision-Induced Dissociation Tandem Mass Spectra of Peptides. Mass Spectrom. Rev. 1995 , 14,49–13.

    Article  Google Scholar 

  148. Mahoney, J.F.; Pereł, J.; Ruatta, S.A.; Martino, P.A.; Husain, S.; Lee, T.D. Massive Cluster Impact Mass Spectrometry: a New Desorption Method for the Analysis of Large Biomolecules. Rapid Commun. Mass Spectrom. 1991, 5, 441–445.

    Article  CAS  Google Scholar 

  149. Cornett, D.S.; Lee, T.D.; Mahoney, J.F. Matrix-Free Desorption of Biomolecules Using Massive Cluster Impact. Rapid Commun. Mass Spectrom. 1994, 8, 996–1000.

    Article  CAS  Google Scholar 

  150. Mahoney, J.F.; Perel, J.; Lee, T.D.; Maruno, P.A.; Williams, P. Shock Wave Model for Sputtering Biomolecules Using Massive Cluster Impact. J. Am. Soc. Mass Spectrom. 1992, 3, 311–317.

    Article  CAS  Google Scholar 

  151. Mahoney, J.F.; Cornett, D.S.; Lee, T.D. Formation of Multiply Charged Ions From Large Molecules Using Massive-Cluster Impact. Rapid Commun. Mass Spectrom. 1994, 8, 403–406.

    Article  CAS  Google Scholar 

  152. Karlsson, N.G.; Karlsson, H.; Hansson, G.C. Sulfated Mucin Oligosaccharides From Porcine Small Intestine Analyzed by Four-Sector Tandem Mass Spectrometry. J. Mass Spectrom. 1996, 31, 560–572.

    Article  CAS  Google Scholar 

  153. Caprioli, R.M.; Beckner, CF.; Smith, L.A. Performance of a FAB Source on a Quad-rupole Mass Spectrometer. Biomed. Mass Spectrom. 1983, 10, 94–97.

    Article  CAS  Google Scholar 

  154. Sundqvist, B.; Macfarlane, R.D. Califor-nium-252-Plasma Desorption-MS. Mass Spectrom. Rev. 1985, 4, 421–460.

    Article  CAS  Google Scholar 

  155. Macfarlane, R.D. Californium-252-Plasma Desorption-MS I — a Historical Perspective. Biol. Mass Spectrom. 1993, 22, 677–680.

    Article  CAS  Google Scholar 

  156. Macfarlane, R.D.; Hu, Z.-H.; Song, S.; Pittenauer, E.; Schmid, E.R.; Allmaier, G.; Metzger, J.O.; Tuszyński, W. 252Cf-Plasma Desorption-MS II — a Perspective of New Directions. Biol. Mass Spectrom. 1994, 23, 117–130.

    Article  CAS  Google Scholar 

  157. Håkansson, P.; Kamensky, I.; Sundqvist, B.; Fohlman, J.; Peterson, P.; McNeal, C.J.; Macfarlane, R.D. Iodine-127-Plasma Desorption-MS of Insulin. J. Am. Chem. Soc. 1982, 104, 2948–2949.

    Article  Google Scholar 

  158. Macfarlane, R.D. Mass Spectrometry of Biomolecules: From PDMS to MALDI. Brazilian J. Phys. 1999, 29, 415–421.

    Article  CAS  Google Scholar 

  159. Sundqvist, B.; Håkansson, P.; Kamensky, I.; Kjellberg, J. Ion Formation from Organic Solids: Fast heavy ion induced desorption of molecular ions from small proteins. Benninghoven, A., ed., Springer Series in Chemical Physics 25, 52–57, 1983, Springer-Verlag Heidelberg.

    Chapter  Google Scholar 

  160. Macfarlane, R.D. 252Californium Plasma Desorption-MS. Biomed. Mass Spectrom. 1981, 8, 449–453.

    Article  CAS  Google Scholar 

  161. Wien, K.; Becker, O. Ion Formation from Organic Solids: Secondary ion emission from metals under fission fragment bombardment. Benninghoven, A., ed., Springer Series in Chemical Physics 25, 47–51, 1983, Springer-Verlag Heidelberg.

    Chapter  Google Scholar 

  162. Zubarev, R.A.; Abeywarna, U.K.; Demirev, P.; Eriksson, J.; Papaléo, R.; Håkansson, P.; Sundqvist, B.U.R. Delayed, Gas-Phase Ion Formation in Plasma Desorption-MS. Rapid Commun. Mass Spectrom. 1997, 11, 963–972.

    Article  CAS  Google Scholar 

  163. Jonsson, G.P.; Hedin, A.B.; Håkansson, P.; Sundqvist, B.U.R.; Save, B.G.S.; Nielsen, P.; Roepstorff, P.; Johansson, K.-E.; Kamensky, I.; Lindberg, M.S.L. Plasma Desorption-MS of Peptides and Proteins Adsorbed on Nitrocellulose. Anal. Chem. 1986, 58, 1084–1087.

    Article  CAS  Google Scholar 

  164. Wolf, B.; Macfarlane, R.D. Small Molecules As Substrates for Adsorption/Desorption in Californium-252 Plasma Desorption-MS. J. Am. Soc. Mass Spectrom. 1990, 2, 29–32.

    Article  Google Scholar 

  165. Song, S.; Macfarlane, R.D. PDMS-Chemistry of Angiotensin II and Insulin in Glucose Glass Thin Films. Anal. Bioanal. Chem. 2002, 373, 647–655.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, J.H. (2004). Fast Atom Bombardment. In: Mass Spectrometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36756-X_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-36756-X_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07388-5

  • Online ISBN: 978-3-540-36756-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics