Skip to main content

On the Representation of Boolean Predicates of the Diffie-Hellman Function

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2607))

Abstract

In this work we give a non-trivial upper bound on the spectral norm of various Boolean predicates of the Diffie-Hellman function. For instance, we consider every individual bit and arbitrary unbiased intervals. Combining the bound with recent results from complexity theory we can rule out the possibility that such a Boolean function can be represented by simple functions like depth-2 threshold circuits with a small number of gates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Boneh. The decision Diffie-Hellman problem. Lecture Notes in Computer Science, 1423:48–63, 1998.

    Google Scholar 

  2. D. Coppersmith and I. Shparlinski. On polynomial approximation of the Discrete Logarithm and the Diffie-Hellman mapping. Journal of Cryptology, 13(3):339–360, March 2000.

    Article  MATH  MathSciNet  Google Scholar 

  3. Forster, Krause, Lokam, Mubarakzjanov, Schmitt, and Simon. Relations between communication complexity, linear arrangements, and computational complexity. FSTTCS: Foundations of Software Technology and Theoretical Computer Science, 21, 2001.

    Google Scholar 

  4. J. Forster. personal communication, 2002.

    Google Scholar 

  5. J. Forster and H. U. Simon. On the smallest possible dimension and the largest possible margin of linear arrangements representing given concept classes. In Proceedings of the 13th International Conference on Algorithmic Learning Theory, pages 128–138, 2002.

    Google Scholar 

  6. Juergen Forster. A linear lower bound on the unbounded error probabilistic communication complexity. In Proceedings of the Sithteenth Annual Conference on Computational Complexity, pages 100–106. IEEE Computer Society, 2001.

    Google Scholar 

  7. E. Kiltz. On the representation of boolean predicates of the diffie-hellman function. Manuscript, 2003.

    Google Scholar 

  8. N. M. Korobov. Exponential Sums and their Applications. Kluwer Academic Publishers, 1992.

    Google Scholar 

  9. E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  10. T. Lange and A. Winterhof. Polynomial interpolation of the elliptic curve and XTR discrete logarithm. In Proceedings of the 8th Annual International Computing and Combinatorics Conference (COCOON’02), pages 137–143, 2002.

    Google Scholar 

  11. R. Paturi and J. Simon. Probabilistic communication complexity. Journal of Computer and System Sciences, 33(1):106–123, aug 1986.

    Article  MATH  MathSciNet  Google Scholar 

  12. K. Prachar. Primzahlverteilung. Springer-Verlag, Berlin, 1957.

    MATH  Google Scholar 

  13. R. Shaltiel. Towards proving strong direct product theorems. In Proceedings of the Sithteenth Annual Conference on Computational Complexity, pages 107–119. IEEE Computer Society, 2001.

    Google Scholar 

  14. I. Shparlinski. Communication complexity and fourier coefficients of the Diffie-Hellman key. Proc. the 4th Latin American Theoretical Informatics Conf., LNCS 1776, pages 259–268, 2000.

    Google Scholar 

  15. I. E. Shparlinski. Number Theoretic Methods in Cryptography. Birkhäuser Verlag, 1999.

    Google Scholar 

  16. I. E. Shparlinski. Cryptographic Application of Analytic Number Theory. Birkhäuser Verlag, 2002.

    Google Scholar 

  17. A. Winterhof. A note on the interpolation of the Diffie-Hellman mapping. In Bulletin of the Australian Mathematical Society, volume 64, pages 475–477, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Winterhof. Polynomial interpolation of the discrete logarithm. Designs, Codes and Cryptography, 25:63–72, 2002.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kiltz, E. (2003). On the Representation of Boolean Predicates of the Diffie-Hellman Function. In: Alt, H., Habib, M. (eds) STACS 2003. STACS 2003. Lecture Notes in Computer Science, vol 2607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36494-3_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-36494-3_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00623-7

  • Online ISBN: 978-3-540-36494-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics