Skip to main content

Multiscale Problems in Solidification Processes

  • Conference paper
Analysis, Modeling and Simulation of Multiscale Problems

Summary

Our objective is to describe solidification phenomena in alloy systems. In the classical approach, balance equations in the phases are coupled to conditions on the phase boundaries which are modelled as moving hypersurfaces. The Gibbs-Thomson condition ensures that the evolution is consistent with thermodynamics. We present a derivation of that condition by defining the motion via a localized gradient flow of the entropy. Another general framework for modelling solidification of alloys with multiple phases and components is based on the phase field approach. The phase boundary motion is then given by a system of Allen-Cahn type equations for order parameters. In the sharp interface limit, i.e., if the smallest length scale β related to the thickness of the diffuse phase boundaries converges to zero, a model with moving boundaries is recovered. In the case of two phases it can even be shown that the approximation of the sharp interface model by the phase field model is of second order in β. Nowadays it is not possible to simulate the microstructure evolution in a whole workpiece. We present a two-scale model derived by homogenization methods including a mathematical justification by an estimate of the model error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, H.W., Pawlow, I.: Existence of solutions for non-isothermal phase separation. Adv. Math. Sci. Appl. 1, 319–409 (1992)

    MATH  MathSciNet  Google Scholar 

  2. Alt, H.W., Pawlow, I.: On the entropy principle of phase transition models with a conserved order parameter. Adv. Math. Sci. Appl. 6 291–376 (1996)

    MATH  MathSciNet  Google Scholar 

  3. Andersson, C.: Third order asymptotics of a phase-field model. TRITANA-0217, Dep. of Num. Anal. and Comp. Sc., Royal Inst. of Technology, Stockholm (2002)

    Google Scholar 

  4. Anderson, D.M., McFadden, G.B., Wheeler, A.A: A phase field model for solidification with convection. Physica D 135, 175–194 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barrett, J.W., Garcke, H., Nürnberg, R.: On the Variational Approximation of Combined Second and Fourth Order Geometric Evolution Equations. Preprint No. 07/2006, Faculty of Mathematics, University of Regensburg.

    Google Scholar 

  6. Bellettini, G., Braides, A., Riey, G.: Variational Approximation of Anisotropic Functionals on Partitions. Ann. Mat. 184, 75–93 (2002)

    MathSciNet  Google Scholar 

  7. Beckermann, C., Diepers, H.-J., Steinbach, I., Karma, A., Tong, X.: Modeling melt convection in phase field simulations of solidification. J. Comput. Phys. 154, 468–496 (1999)

    Article  MATH  Google Scholar 

  8. Betounes, D.E.: Kinematics of submanifolds and the mean curvature normal. Arch. Rat. Mech. Anal. 96, 1–27 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Blowey, J.F., Elliott, C.M.: The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. I. Mathematical analysis. Europ. J. Appl. Math. 2, 233–280 (1991)

    MATH  MathSciNet  Google Scholar 

  10. Brokate, M, Sprekels, J.: Hysteresis and Phase Transitions. Appl. Math. Sc. 121, Springer (1996)

    Google Scholar 

  11. Bronsard, L., Garcke, H., Stoth, B.: A multi-phase Mullins-Sekerka system: Matched asymptotic expansions and an implicit time discretization for the geometric evolution problem. Proc. Roy. Soc. Edinburgh Sect. A 128, 481–506 (1998)

    MATH  MathSciNet  Google Scholar 

  12. Caginalp, G., Chen, X.: Convergence of the phase field model to its sharp interface limits. Europ. J. Appl. Math. 9, 417–445 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Caginalp, G., Fife, P.C.: Dynamics of layered interfaces arising from phase boundaries. SIAM J. Appl. Math. 48, 506–518 (1988)

    Article  MathSciNet  Google Scholar 

  14. Caginalp, G.: Stefan and Hele Shaw type models as asymptotic limits of the phase field equations. Phys. Rev. A 39, 5887–5896 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cahn, J.W., Hoffmann, D.W.: A vector thermodynamics for anisotropic surfaces II. Curved and faceted surfaces. Acta Metall. Mater., 22, 1205–1214 (1974)

    Article  Google Scholar 

  16. Davis, S.H.: Theory of solidification. Cambridge University Press (2001)

    Google Scholar 

  17. De Mottoni, P., Schatzman, M.: Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347, 1533–1589 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dirr, N.: A Stefan problem with surface tension as the sharp interface limit of a nonlocal system of phase-field type. J. Statist. Phys. 114, 1085–1113 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dreyer, W., Wagner, B.: Sharp-interface model for eutectic alloys, Part I: Concentration dependent surface tension. Interf. Free Bound. 7, 199–227 (2005)

    MATH  MathSciNet  Google Scholar 

  20. Eck, C.: Finite element error estimates for a two-scale phase field model describing liquid-solid phase transitions with equiaxed dendritic microstructure. SPP 1095 Mehrskalenprobleme, Preprint 67 (2002) http://www1.am.uni-erlangen.de/tikyaeck/papers/pfhee.pdf

    Google Scholar 

  21. Eck, C.: A two-scale phase field model for liquid-solid phase transitions of binary mixtures with dendritic microstructure. Habilitation Thesis, Universität Erlangen (2004)

    Google Scholar 

  22. Eck, C.: Homogenization of a phase field model for binary mixtures. Multiscale Modeling and Simulation 3(1), 1–27 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Eck, C.: Analysis of a two-scale phase field model for liquid-solid phase transitions with equiaxed dendritic microstructures. Multiscale Modeling and Simulation 3(1), 28–49 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Fife, P.C., Penrose, O.: Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D 43, 44–62 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  25. Fife, P.C., Penrose, O.: Interfacial dynamics for thermodynamically consistent phase-field models with nonconserved order parameter. EJDE 1995 16, 1–49 (1995)

    Google Scholar 

  26. Garcke, H. Haas, R., Stinner, B.: On Ginzburg-Landau type free energies for multi-phase systems. In preparation.

    Google Scholar 

  27. Garcke, H., Nestler, B., Stinner, B.: A diffuse interface model for alloys with multiple components and phases. SIAM J. Appl. Math., 64, 775–799 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Garcke, H., Nestler, B., Stoth, B.: On anisotropic order parameter models for multi-phase systems and their sharp interface limits. Phys. D 115, 87–108 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Garcke, H., Nestler, B., Stoth, B.: A multi phase field concept: numerical simulations of moving phase boundaries and multiple junctions. SIAM J. Appl. Math. 60, 295–315 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Garcke, H., Stinner, B.: Second order phase field asymptotics for multicomponent systems. To appear in Interf. Free Bound. (2006)

    Google Scholar 

  31. Giusti, E.: Minimal surfaces and functions of bounded variation. Notes on Pure Math. 10, Austr. Nat. Univ. Canberra (1977)

    Google Scholar 

  32. Gurtin, M.E.: Configurational forces as basic concepts of continuum physics. Appl. Math. Sc. 137, Springer (2000)

    Google Scholar 

  33. Haasen, P.: Physikalische Metallkunde. 3. ed., Springer (1994)

    Google Scholar 

  34. Haas, R.: Modelling and analysis for general non-isothermal convective phase field systems. In preparation.

    Google Scholar 

  35. Hornung, U. (ed.): Homogenization and Porous Media. Springer, New York (1997)

    MATH  Google Scholar 

  36. Jikov, V.V, Kozlov, S.M., Oleinik, O.A: Homogenization of Differential Operators and Integral Functionals, Springer, Berlin-Heidelberg (1994)

    Google Scholar 

  37. Karma, A., Rappel, J.-W.: Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57, 4323–4349 (1998)

    Article  MATH  Google Scholar 

  38. Kirkaldy, J.S., Young, D.J.: Diffusion in the condensed state. The Institute of Metals, London (1987)

    Google Scholar 

  39. Karma, A.: Phase-field formulation for quantitative modeling of alloy solidification. Phys. Rev. Lett. 87, 115701–1–4 (2001)

    Article  Google Scholar 

  40. Kobayashi, R.: Modeling and numerical simulation of dendritic crystal growth. Physica D 63 410–423 (1993)

    Article  MATH  Google Scholar 

  41. Krejči, P., Rocca, E., Sprekels, J.: Nonlocal temperature-dependent phase-field models for non-isothermal phase transitions. WIAS Preprint No. 1006 (2005)

    Google Scholar 

  42. Landau, L.D., Ginzburg, V.I.: K teorii sverkhrovodimosti. Zh. Eksp. Teor. Fiz 20, 1064–1082 (1950), english translation: On the theory of superconductivity, Collected Papers of L.D. Landau, D. ter Haar (ed.), Pergamon, Oxford, UK, 626-633 (1965)

    Google Scholar 

  43. Luckhaus, S., Visintin, A.: Phase transition in multicomponent systems. Man. Math. 43, 261–288 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  44. McFadden, G.B., Wheeler, A.A., Anderson, D.M.: Thin interface asymptotics for an energy/entropy approach to phase-field models with unequal conductivities. Phys. D 144, 154–168 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  45. Müller, I.: Grundzüge der Thermodynamik. 3. ed., Springer (2001)

    Google Scholar 

  46. Nestler, B., Wheeler, A.A., Ratke, L., Stöcker, C.: Phase-field model for solidification of a monotectic alloy with convection. Physica D 141, 133–154 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  47. Onsager, L.: Reciprocal relations in irreversible processes I. Phys. Rev., 37, 405–426 (1931)

    Article  MATH  Google Scholar 

  48. Penrose, O., Fife, P.C.: Thermodynamically consistent models of phase field type for the kinetics of phase transition. Phys. D 43, 44–62 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  49. Ramirez, J.C., Beckermann, C., Karma, A., Diepers, H.-J.: Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion. Phys. Rev. E 69, 51607–1–16 (2004)

    Article  Google Scholar 

  50. Sprekels, J., Zheng, S.: Global existence and asymptotic behaviour for a nonlocal phase-field model for non-isothermal phase transitions. J. Math. Anal. Appl. 279, 97–110 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  51. Sternberg, P.: Vector-valued local minimizers of nonconvex variational problems. Rocky Mountain J. Math. 21, 799–807 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  52. Stinner, B.: Surface energies in multi phase systems with diffuse phase boundaries. To appear in the Proc. of the conference on Free Boundary Problems in Coimbra, Portugal (2005)

    Google Scholar 

  53. Stinner, B.: Derivation and analysis of a phase field model for alloy solidification. Doctoral Thesis, Universität Regensburg (2005).

    Google Scholar 

  54. Stoth, B.: A sharp interface limit of the phase field equations, onedimensional and axisymmetric. Europ. J. Appl. Math. 7, 603–633 (1996)

    MATH  MathSciNet  Google Scholar 

  55. Visintin, A.: Models of phase transitions. Progr. Nonlin. Diff. Eq. Appl. 28, Birkhäuser, Boston (1996)

    Google Scholar 

  56. Wheeler, A.A., McFadden, G.B., Boettinger, W.J.: Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A 45, 7424–7439 (1992)

    Article  Google Scholar 

  57. Wheeler, A.A., McFadden, G.B.: On the notion of a ξ-vector and a stress tensor for a general class of anisotropic diffuse interface models. Proc. Roy. Soc. London Ser. A 453, 1611–1630 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eck, C., Garcke, H., Stinner, B. (2006). Multiscale Problems in Solidification Processes. In: Mielke, A. (eds) Analysis, Modeling and Simulation of Multiscale Problems. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35657-6_2

Download citation

Publish with us

Policies and ethics