Skip to main content

Rotating Resonator-Oscillator Experiments to Test Lorentz Invariance in Electrodynamics

  • Chapter
Special Relativity

Part of the book series: Lecture Notes in Physics ((LNP,volume 702))

Abstract

The Einstein Equivalence Principle (EEP) is a founding principle of relativity [1]. One of the constituent elements of EEP is Local Lorentz Invariance (LLI), which postulates that the outcome of a local experiment is independent of the velocity and orientation of the apparatus. The central importance of this postulate has motivated tremendous work to experimentally test LLI. Also, a number of unification theories suggest a violation of LLI at some level. However, to test for violations it is necessary to have an alternative theory to allow interpretation of experiments [1], and many have been developed [2–7]. The kinematical frameworks (RMS) [2, 3] postulate a simple parameterization of the Lorentz transformations with experiments setting limits on the deviation of those parameters from their values in special relativity (SR). Because of their simplicity they have been widely used to interpret many experiments [8–11]. More recently, a general Lorentz violating extension of the standard model of particle physics (SME) has been developed [6] whose Lagrangian includes all parameterized Lorentz violating terms that can be formed from known fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Will C.M., Theory and Experiment in Gravitational Physics, revised edition (Cambridge University Press, Cambridge, 1993).

    MATH  Google Scholar 

  2. Robertson H.P., Rev. Mod. Phys. 21, 378 (1949).

    Article  MATH  ADS  Google Scholar 

  3. Mansouri R., Sexl R.U., Gen. Rel. Grav. 8, 497 (1977).

    Article  ADS  Google Scholar 

  4. Lightman A.P., Lee D.L., Phys. Rev. D 8, 364 (1973).

    ADS  Google Scholar 

  5. Ni W.-T., Phys. Rev. Lett. 38, 301 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  6. Colladay D., Kostelecký V.A., Phys.Rev. D 55, 6760 (1997); Colladay D., Kostelecký V.A., Phys. Rev. D58, 116002 (1998)

    ADS  Google Scholar 

  7. Kostelecký V.A.,Mewes M., Phys. Rev. D 66, 056005, (2002).

    ADS  Google Scholar 

  8. Brillet A., Hall J., Phys. Rev. Lett. 42, 549 (1979).

    Article  ADS  Google Scholar 

  9. Wolf P. et al., Phys. Rev. Lett. 90, 060402 (2003).

    Article  ADS  Google Scholar 

  10. Müller H. et al., Phys. Rev. Lett. 91, 020401 (2003).

    Article  Google Scholar 

  11. Wolf P., et al., Gen. Rel. and Grav., 36, 2351 (2004).

    Article  MATH  ADS  Google Scholar 

  12. Lipa J.A. et al., Phys. Rev. Lett. 90, 060403 (2003).

    Article  ADS  Google Scholar 

  13. Wolf P, et al., Phys. Rev. D 70, 051902(R), (2004).

    ADS  Google Scholar 

  14. Tobar M.E. et al., Phys. Lett. A 300, 33 (2002).

    Article  ADS  Google Scholar 

  15. Stanwix P.L., Tobar, M.E., Wolf P. et al., Phys. Rev. Lett. 95, 040404 (2005).

    Article  ADS  Google Scholar 

  16. Antonini P. et al., Phys. Rev. A. 71, 050101 (2005).

    Article  ADS  Google Scholar 

  17. Herrmann S. et al., arXiv: physics 050809, accepted for publication in Phys. Rev. Lett., (2005).

    Google Scholar 

  18. Michelson A.A. and Morley E.W., Am. J. Sci. 34, 333 (1887).

    Google Scholar 

  19. Kennedy R.J. and Thorndike E.M., Phys. Rev. B 42, 400 (1932).

    Article  ADS  Google Scholar 

  20. Ives H.E. and Stilwell G.R., J. Opt. Soc. Am. 28, 215 (1938).

    Article  ADS  Google Scholar 

  21. Saathoff G., et al., Phys. Rev. Lett 91, 190403 (2003).

    Article  ADS  Google Scholar 

  22. Jackiw R. and Kostelecký V.A., Phys. Rev. Lett, 82 (1999).

    Google Scholar 

  23. Kostelecký V.A., and Mewes M., Phys. Rev. Lett. 87, 251304 (2001).

    Article  ADS  Google Scholar 

  24. Tobar M.E. et al., Phys. Rev. D71, 025004 (2005).

    ADS  Google Scholar 

  25. Bluhm R. et al., Phys. Rev. D68, 125008 (2003).

    ADS  Google Scholar 

  26. Bailey Q.G., and Kostelecký V.A., Phys. Rev. D70, 076006 (2004).

    ADS  Google Scholar 

  27. Krupka J., Derzakowski K., Abramowicz A., Tobar M.E. and Geyer R., IEEE Trans. on Microw. Theory Tech. 47, 752–759, (1999).

    Article  ADS  Google Scholar 

  28. H. Müller, S. Herrmann, C. Braxmaier, S. Schiller and A. Peters, Appl Phys. B (Laser Opt.) 77, 719–773, (2004).

    Article  Google Scholar 

  29. Hall J.L., Ye J., and Ma L.-S., Phys. Rev. A62, 013815 (2000).

    ADS  Google Scholar 

  30. Tobar M.E., Hartnett J.G., Phys. Rev. D67, 062001 (2003).

    ADS  Google Scholar 

  31. Braxmaier C., Pradl O., Müller H., Peters A., Mlynek J., Loriette V., Schiller S., Phys. Rev. D64, 042001 (2001).

    ADS  Google Scholar 

  32. Müller H., Phys. Rev. D71, 045004 (2003).

    Google Scholar 

  33. Tobar M.E. et al., IEEE Trans. on Ultrason., Ferroelect. Fr Contr., 47, 421, (2000).

    Article  Google Scholar 

  34. Giles A.J. et al., Physica B 165, 145, (1990).

    Article  ADS  Google Scholar 

  35. Tobar M.E., Mann A.G., IEEE Trans. Microw. Theory Tech. 39, 2077, (1991).

    Article  ADS  Google Scholar 

  36. Mann A.G., Topics in Appl. Phys. 79, 37, (2001).

    Article  ADS  Google Scholar 

  37. Hartnett J.G., Tobar M.E., Topics in Appl. Phys. 79, 67, (2001).

    Article  ADS  Google Scholar 

  38. Tobar M.E., Hartnett J.G., Ivanov E.N., Cros D., Blondy P., IEEE Trans. Instr. and Meas. 30, 522, (2001).

    Article  Google Scholar 

  39. Tobar M.E. et al., IEEE Trans. Ultrason., Ferroelect. Fr Contr., 52, 17, (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Tobar, M., Stanwix, P., Susli, M., Wolf, P., Locke, C., Ivanov, E. (2006). Rotating Resonator-Oscillator Experiments to Test Lorentz Invariance in Electrodynamics. In: Ehlers, J., Lämmerzahl, C. (eds) Special Relativity. Lecture Notes in Physics, vol 702. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34523-X_15

Download citation

Publish with us

Policies and ethics