Skip to main content

An Alternative Fabric-based Yield and Failure Criterion for Trabecular Bone

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arcan, M., Hashin, Z., and Voloshin, A. (1978). A method to produce uniform plane-stress states with applications to fiber-reinforced materials. Exp. Mech. 18:141–146.

    Article  Google Scholar 

  • Arramon, Y. P., Mehrabadi, M. M., Martin, D. W., and Cowin, S. C. (2000). A multidimensional anisotropic strength criterion based on kelvin modes. Int. J. Solids Structures 37:2915–2935.

    Article  MATH  Google Scholar 

  • Boehler, J. P., ed. (1987). Applications of Tensor Functions in Solid Mechanics. Wien: Springer-Verlag. CISM Courses and Lectures No. 292, International Centre for Mechanical Sciences.

    MATH  Google Scholar 

  • Chang, W. C. W., Christensen, T. M., Pinilla, T. P., and Keaveny, T. M. (1999). Isotropy of uniaxial yield strains for bovine trabecular bone. J. Orthop. Res. 17:582–585.

    Article  Google Scholar 

  • Cowin, S. C., and He, Q.-C. (2005). Tensile and compressive stress yield criteria for cancellous bone. J. Biomech. 38:141–144.

    Google Scholar 

  • Cowin, S. C., and Van Buskirk, W. C. (1986). Thermodynamic restriction of the elastic constants of bone. J. Biomech. 19:85–87.

    Article  Google Scholar 

  • Cowin, S. C. (1985). The relationship between the elasticity tensor and the fabric tensor. Mech. Mat. 4:137–147.

    Article  Google Scholar 

  • Curnier, A., He, Q.-C., and Zysset, P. (1995). Conewise linear elastic materials. J. Elasticity 37:1–38.

    Article  MathSciNet  MATH  Google Scholar 

  • Deshpande, V. S., and Fleck, N. A. (2000). Isotropic constitutive model for metallic foams. J. Mech. Phys. Solids 48:1253–1283.

    Article  MATH  Google Scholar 

  • Fenech, C. M., and Keaveny, T. M. (1999). A cellular solid criterion for predicting the axial-shear failure properties of bovine trabecular bone. J. Biomech. Eng. 121:414–422.

    Google Scholar 

  • Gibson, L. J., and Ashby, M. F. (1988). Cellular solids. Oxford: Pergamon Press.

    MATH  Google Scholar 

  • Gioux, G., McCormack, T. M., and Gibson, L. J. (2000). Failure of aluminium foams under multiaxial loads. Int. J. Mech. Sci. 42:1097–1117.

    Article  MATH  Google Scholar 

  • Goulet, R. W., Goldstein, S. A., Ciarelli, M. J., Kuhn, J. L., Brown, M. B., and Feldkamp, L. A. (1994). The relationship between the structural and orthogonal compressive properties of trabecular bone. J. Biomech. 27: 375–389.

    Article  Google Scholar 

  • Harrigan, T. P., and Mann, R. W. (1984). Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J. Mat. Sci. 19:761–767.

    Article  Google Scholar 

  • Hoffman, O. (1967). The brittle strength of orthotropic materials. J. Compos. Mater. 1:200–206.

    Google Scholar 

  • Kanatani, K.-I. (1984). Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22:149–164.

    Article  MATH  MathSciNet  Google Scholar 

  • Keaveny, T. M., Wachtel, E. F., Ford, C. M., and Hayes, W. C. (1994a). Differences between the tensile and compressive strength of bovine tibial trabecular bone depend on modulus. J. Biomech. 27:1137–1146.

    Article  Google Scholar 

  • Keaveny, T. M., Wachtel, E. F., Guo, X. E., and Hayes, W. C. (1994b). Mechanical behavior of damaged trabecular bone. J. Biomech. 27:1309–1318.

    Article  Google Scholar 

  • Keaveny, T. M., Wachtel, E. F., Zadesky, S. P., and Arramon, Y. P. (1999). Application of the tsai-wu quadratic multiaxial failure criterion to bovine trabecular bone. J. Biomech. Eng. 121:99–107.

    Google Scholar 

  • Kopperdahl, D. L., and Keaveny, T. M. (1998). Yield strain behavior of trabecular bone. J. Biomech. 31:601–608.

    Article  Google Scholar 

  • Miller, R. E. (2000). A continuum plasticity model for the constitutive and indentation behaviour of foamed metals. Int. J. Mech. Sci. 42:729–754.

    Article  MATH  Google Scholar 

  • Morgan, E. F., Arramon, Y. P., Kopperdahl, D. L., and Keaveny, T. M. (1999). Dependence of yield strain on anatomic site for human trabecular bone. In Bioengineering Conference. The American Society of Mechanical Engineers (ASME). BED-Vol. 43, 23–24.

    Google Scholar 

  • Pietruszak, S., Inglis, D., and Pande, G. N. (1999). A fabric-dependent fracture criterion for bone. J. Biomech. 32:1071–1079.

    Article  Google Scholar 

  • Rice, J. C., Cowin, S. C., and Bowman, J. A. (1988). On the dependence of the elasticity and strength of cancellous bone on apparent density. J. Biomech. 21:155–168.

    Article  Google Scholar 

  • Rincon-Kohli, L. (2003). Identification of a multiaxial failure criterion for human trabecular bone. Ph.D. Dissertation, Swiss Federal Institute of Technology, Lausanne.

    Google Scholar 

  • Stone, J. L., Beaupre, G. S., and Hayes, W. C. (1983). Multiaxial strength characteristics of trabecular bone. J. Biomech. 16:743–752.

    Article  Google Scholar 

  • Tsai, S. W., and Wu, E. M. (1971). A general theory of strength of anisotropic materials. J. Compos. Mater. 5:58–80.

    Google Scholar 

  • Turner, C. H., Rho, J., Takano, Y., Tsui, T. Y., and Pharr, G. M. (1999). The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J. Biomech. 32:437–441.

    Article  Google Scholar 

  • Turner, C. H. (1989). Yield behavior of bovine cancellous bone. J. Biomech. Eng. 111:256–260.

    Article  Google Scholar 

  • Zysset, P. K., and Curnier, A. (1995). An alternative model for anisotropic elasticity based on fabric tensors. Mech. Mat. 21:243–250.

    Article  Google Scholar 

  • Zysset, P. (2003). A review of fabric-elasticity relationships for human trabecular bone: theories and experiments. J. Biomech. 36:1469–1485.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zysset, P., Rincón, L. (2006). An Alternative Fabric-based Yield and Failure Criterion for Trabecular Bone. In: Holzapfel, G.A., Ogden, R.W. (eds) Mechanics of Biological Tissue. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31184-X_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-31184-X_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25194-1

  • Online ISBN: 978-3-540-31184-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics