Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 310))

Abstract

Epigenetics is the study of genes during development. Gene expression states are set by transcriptional activators and repressors and locked in by cell-heritable chromatin states. Inappropriate expression or repression of genes can change developmental trajectories and result in disease. Aberrant chromatin states leading to aberrant gene expression patterns (epimutations) have been detected in several recognizable syndromes as well as in cancer. They can occur secondary to a DNA mutation in a cis- or trans-acting factor, or as a “true” or primary epimutation in the absence of any DNA sequence change. Primary epimutations often occur after fertilization and lead to somatic mosaicism. It has been estimated that the rate of primary epimutations is one or two orders of magnitude greater than somatic DNA mutation. Therefore, the contribution of epimutations to human disease is probably underestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baylin SB, Hoppener JW, de Bustros A, Steenbergh PH, Lips CJ, Nelkin BD (1986) DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Res 46:2917–2922

    PubMed  CAS  Google Scholar 

  • Bennett-Baker PE, Wilkowski J, Burke DT (2003) Age-associated activation of epigenetically repressed genes in the mouse. Genetics 165:2055–2062

    PubMed  CAS  Google Scholar 

  • Bielinska B, Blaydes SM, Buiting K, Yang T, Krajewska-Walasek M, Horsthemke B, Brannan CI (2000) De novo deletions of SNRPN exon 1 in early human and mouse embryos result in a paternal to maternal imprint switch. Nat Genet 25:74–78

    Article  PubMed  CAS  Google Scholar 

  • Buiting K, Saitoh S, Gross S, Dittrich B, Schwartz S, Nicholls RD, Horsthemke B (1995) Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nat Genet 9:395–400

    Article  PubMed  CAS  Google Scholar 

  • Buiting K, Gross S, Lich C, Gillessen-Kaesbach G, el-Maarri O, Horsthemke B (2003) Epimutations in Prader-Willi and Angelman syndromes: a molecular study of 136 patients with an imprinting defect. Am J Hum Genet 72:571–577

    Article  PubMed  CAS  Google Scholar 

  • Castro R, Rivera I, Ravasco P, Camilo ME, Jakobs C, Blom HJ, deAlmeida IT (2004) 5,10-methylenetetrahydrofolate reductase (MTHFR) 677C→T and 1298A→C mutations are associated with DNA hypomethylation. J Med Genet 41:454–458

    Article  PubMed  CAS  Google Scholar 

  • Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, Jaenisch R, Greenberg ME (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302:885–889

    Article  PubMed  CAS  Google Scholar 

  • Chong S, Whitelaw E (2004) Epigenetic germline inheritance. Curr Opin Genet Dev 14:692–696

    Article  PubMed  CAS  Google Scholar 

  • Cox GF, Burger J, Lip V, Mau UA, Sperling K, Wu BL, Horsthemke B (2002) Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet 71:162–164

    Article  PubMed  CAS  Google Scholar 

  • DeBaun MR, Niemitz EL, Feinberg AP (2003) Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 72:156–160

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4:143–153

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    Article  PubMed  CAS  Google Scholar 

  • Gabellini D, Green MR, Tupler R (2002) Inappropriate gene activation in FSHD: a repressor complex binds a chromosomal repeat deleted in dystrophic muscle. Cell 110:339–348

    Article  PubMed  CAS  Google Scholar 

  • Garfinkel MD, Ruden DM (2004) Chromatin effects in nutrition, cancer, and obesity. Nutrition 20:56–62

    Article  PubMed  CAS  Google Scholar 

  • Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, Le Bouc Y (2003) In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet 72:1338–1341

    Article  PubMed  CAS  Google Scholar 

  • Gillessen-Kaesbach G, Demuth S, Thiele H, Theile U, Lich C, Horsthemke B (1999) A previously unrecognised phenotype characterised by obesity, muscular hypotonia, and ability to speak in patients with Angelman syndrome caused by an imprinting defect. Eur J Hum Genet 7:638–644

    Article  PubMed  CAS  Google Scholar 

  • Glenn CC, Nicholls RD, Robinson WP, Saitoh S, Niikawa N, Schinzel A, Horsthemke B, Driscoll DJ (1993) Modification of 15q11-q13 DNA methylation imprints inunique Angelman and Prader-Willi patients. Hum Mol Genet 2:1377–1382

    PubMed  CAS  Google Scholar 

  • Greger V, Passarge E, Hopping W, Messmer E, Horsthemke B (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83:155–158

    Article  PubMed  CAS  Google Scholar 

  • Greger V, Debus N, Lohmann D, Hopping W, Passarge E, Horsthemke B (1994) Frequency and parental origin of hypermethylated RB1 alleles in retinoblastoma. Hum Genet 94:491–496

    Article  PubMed  CAS  Google Scholar 

  • Halliday J, Oke K, Breheny S, Algar E, D JA (2004) Beckwith-Wiedemann syndrome and IVF: a case-control study. Am J Hum Genet 75:526–528

    Article  PubMed  CAS  Google Scholar 

  • Holliday R (1987) The inheritance of epigenetic defects. Science 238:163–170

    PubMed  CAS  Google Scholar 

  • Horike SI, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37:31–40

    Article  PubMed  CAS  Google Scholar 

  • Jones C, Booth C, Rita D, Jazmines L, Brandt B, Newlan A, Horsthemke B (1997) Bilateral retinoblastoma in a male patient with an X; 13 translocation: evidence for silencing of the RB1 gene by the spreading of X inactivation. Am J Hum Genet 60:1558–1562

    PubMed  CAS  Google Scholar 

  • Khosla S, Dean W, Reik W, Feil R (2001) Culture of preimplantation embryos and its long-term effects on gene expression and phenotype. Hum Reprod Update 7:419–427

    Article  PubMed  CAS  Google Scholar 

  • Ludwig M, Katalinic A, Groß S, Sutcliffe A, Varon R, Horsthemke B (2005) Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J Med Genet 42:289–291

    Article  PubMed  CAS  Google Scholar 

  • Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR, Macdonald F, Sampson JR, Barratt CL, Reik W, Hawkins MM (2003) Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet 40:62–64

    Article  PubMed  CAS  Google Scholar 

  • Murrell A, Heeson S, Cooper WN, Douglas E, Apostolidou S, Moore GE, Maher ER, Reik W (2004) An association between variants in the IGF2 gene and Beckwith-Wiedemann syndrome: interaction between genotype and epigenotype. Hum Mol Genet 13:247–255

    Article  PubMed  CAS  Google Scholar 

  • Nazlican H, Zeschnigk M, Claussen U, Michel S, Boehringer S, Gillessen-Kaesbach G, Buiting K, Horsthemke B (2004) Somatic mosaicism in patients with Angelman syndrome and an imprinting defect. Hum Mol Genet 13:2547–2555

    Article  PubMed  CAS  Google Scholar 

  • Niemitz EL, DeBaun MR, Fallon J, Murakami K, Kugoh H, Oshimura M, Feinberg AP (2004) Microdeletion of LIT1 in familial Beckwith-Wiedemann syndrome. Am J Hum Genet 75:844–849

    Article  PubMed  CAS  Google Scholar 

  • Orstavik KH, Eiklid K, van der Hagen CB, Spetalen S, Kierulf K, Skjeldal O, Buiting K (2003) Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection. Am J Hum Genet 72:218–219

    Article  PubMed  CAS  Google Scholar 

  • Ozcelik T, Leff S, Robinson W, Donlon T, Lalande M, Sanjines E, Schinzel A, Francke U (1992) Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Willi syndrome critical region. Nat Genet 2:265–269

    Article  PubMed  CAS  Google Scholar 

  • Paz MF, Avila S, Fraga MF, Pollan M, Capella G, Peinado MA, Sanchez-Cespedes M, Herman JG, Esteller M (2002) Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors. Cancer Res 62:4519–4524

    PubMed  CAS  Google Scholar 

  • Petronis A (2001) Human morbid genetics revisited: relevance of epigenetics. Trends Genet 17:142–146

    Article  PubMed  CAS  Google Scholar 

  • Prawitt D, Enklaar T, Gaertner-Rupprecht B, Spangenberg C, Oswald M, Lausch E, Schmidtke P, Reutzel D, Fees S, Lucito R, Korzon M, Brozek I, Limon J, Housman D, Pelletier J, Zabel B (2005) Microdeletion of target sites for insulator protein CTCF in a chromosome 11p15 imprinting center in Beckwith-Wiedemann syndrome and Wilms’ tumor. Proc Natl Acad Sci USA 102:4085–4090

    Article  PubMed  CAS  Google Scholar 

  • Reis A, Dittrich B, Greger V, Buiting K, Lalande M, Gillessen-Kaesbach G, Anvret M, Horsthemke B (1994) Imprinting mutations suggested by abnormal DNA methylation patterns in familial Angelman and Prader-Willi syndromes. Am J Hum Genet 54:741–747

    PubMed  CAS  Google Scholar 

  • Rougeulle C, Cardoso C, Fontes M, Colleaux L, Lalande M (1998) An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nat Genet 19:15–16

    PubMed  CAS  Google Scholar 

  • Runte M, Huttenhofer A, Gross S, Kiefmann M, Horsthemke B, Buiting K (2001) The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet 10:2687–2700

    Article  PubMed  CAS  Google Scholar 

  • Sollars V, Lu X, Xiao L, Wang X, Garfinkel MD, Ruden DM (2003) Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet 33:70–74

    Article  PubMed  CAS  Google Scholar 

  • Sparago A, Cerrato F, Vernucci M, Ferrero GB, Silengo MC, Riccio A (2004) Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome. Nat Genet 36:958–960

    Article  PubMed  CAS  Google Scholar 

  • Stirzaker C, Song JZ, Davidson B, Clark SJ (2004) Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells. Cancer Res 64:3871–3877

    Article  PubMed  CAS  Google Scholar 

  • Suter CM, Martin DI, Ward RL (2004) Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet 36:497–501

    Article  PubMed  CAS  Google Scholar 

  • Tufarelli C, Stanley JA, Garrick D, Sharpe JA, Ayyub H, Wood WG, Higgs DR (2003) Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 34:157–165

    Article  PubMed  CAS  Google Scholar 

  • Waddington CH (1959) Canalization of development and genetic assimilation of acquired characters. Nature 183:1654–1655

    Article  PubMed  CAS  Google Scholar 

  • Wey E, Bartholdi D, Riegel M, Nazlican H, Horsthemke B, Schinzel A, Baumer A (2004) Mosaic imprinting defect in a patient with an almost typical expression of the Prader-Willi syndrome. Eur J Hum Genet 13:273–277

    Article  Google Scholar 

  • Ying AK, Hassanain HH, Roos CM, Smiraglia DJ, Issa JJ, Michler RE, Caligiuri M, Plass C, Goldschmidt-Clermont PJ (2000) Methylation of the estrogen receptoralpha gene promoter is selectively increased in proliferating human aortic smooth muscle cells. Cardiovasc Res 46:172–179

    Article  PubMed  CAS  Google Scholar 

  • Zeschnigk M, Schmitz B, Dittrich B, Buiting K, Horsthemke B, Doerfler W (1997) Imprinted segments in the human genome: different DNA methylation patterns in the Prader-Willi/Angelman syndrome region as determined by the genomic sequencing method. Hum Mol Genet 6:387–395

    Article  PubMed  CAS  Google Scholar 

  • Zogel C, Böhringer S, Groß S, Varon R, Buiting K, Horsthemke B (2006) Identification of cis-and trans-acting factors possibly modifying the risk of epimutations on chromosome 15. Eur J Hum Genet (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Horsthemke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horsthemke, B. (2006). Epimutations in Human Disease. In: Doerfler, W., Böhm, P. (eds) DNA Methylation: Development, Genetic Disease and Cancer. Current Topics in Microbiology and Immunology, vol 310. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31181-5_4

Download citation

Publish with us

Policies and ethics