Skip to main content

Diversity of Nitrogen Metabolism Among Yeast Species: Regulatory and Evolutionary Aspects

  • Chapter

Part of the book series: The Yeast Handbook ((YEASTHDB))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Sater F, El Bakkoury M, Urrestarazu A, Vissers S, André B (2004a) Amino acid signaling in yeast: casein kinase I and the Ssy5 endoprotease are key determinants of endoproteolytic activation of the membrane-bound Stp1 transcription factor. Mol Cell Biol 24:9771–9785

    Article  PubMed  CAS  Google Scholar 

  • Abdel-Sater F, Iraqui I, Urrestarazu A, André B (2004b) The external amino acid signaling pathway promotes activation of Stp1 and Uga35/Dal81 transcription factors for induction of the AGP1 gene in Saccharomyces cerevisiae. Genetics 166:1727–1739

    Article  PubMed  CAS  Google Scholar 

  • Amar N, Messenguy F, El Bakkoury M, Dubois E (2000) ArgRII, a component of the ArgRMcm1 complex involved in the control of arginine metabolism in Saccharomyces cerevisiae, is the sensor of arginine. Mol Cell Biol 20:2087–2097

    Article  PubMed  CAS  Google Scholar 

  • André B (1995) An overview of membrane transport proteins in Saccharomyces cerevisiae. Yeast 11:1575–1611

    PubMed  Google Scholar 

  • André B, Hein C, Grenson M, Jauniaux JC (1993) Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae. Mol Gen Genet 237:17–25

    PubMed  Google Scholar 

  • André B, Talibi D, Soussi Boudekou S, Hein C, Vissers S, Coornaert D (1995) Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5′-GAT(A/T)A-3′ upstream from the UGA4 gene of Saccharomyces cerevisiae. Nucleic Acids Res 23:558–564

    PubMed  Google Scholar 

  • Andreasson C, Ljungdahl PO (2002) Receptor-mediated endoproteolytic activation of two transcription factors in yeast. Genes Dev 16:3158–3172

    Article  PubMed  CAS  Google Scholar 

  • Avendano A, Deluna A, Olivera H, Valenzuela L, Gonzalez A (1997) GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae. J Bacteriol 179:5594–5597

    PubMed  CAS  Google Scholar 

  • Avila J, Gonzalez C, Brito N, Siverio JM (1998) Clustering of the YNA1 gene encoding a Zn(II)2Cys6 transcriptional factor in the yeast Hansenula polymorpha with the nitrate assimilation genes YNT1, YNI1 and YNR1, and its involvement in their transcriptional activation. Biochem J 335:647–652

    PubMed  CAS  Google Scholar 

  • Axelrod JD, Majors J, Brandriss MC (1991) Proline-independent binding of PUT3 transcriptional activator protein detected by footprinting in vivo. Mol Cell Biol 11:564–567

    PubMed  CAS  Google Scholar 

  • Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692

    PubMed  CAS  Google Scholar 

  • Beck T, Schmidt A, Hall MN (1999) Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J Cell Biol 146:1227–1238

    Article  PubMed  CAS  Google Scholar 

  • Beckerich JM, Lambert M, Gaillardin C (1994) LYC1 is the structural gene for lysine N-6-acetyl transferase in yeast. Curr Genet 25:24–29

    Article  PubMed  CAS  Google Scholar 

  • Bernard F, André B (2001) Genetic analysis of the signalling pathway activated by external amino acids in Saccharomyces cerevisiae. Mol Microbiol 41:489–502

    Article  PubMed  CAS  Google Scholar 

  • Bertram PG, Choi JH, Carvalho J, Ai W, Zeng C, Chan TF, Zheng XF (2000) Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J Biol Chem 275:35727–35733

    PubMed  CAS  Google Scholar 

  • Biswas S, Roy M, Datta A (2003) N-acetylglucosamine-inducible CaGAP1 encodes a general amino acid permease which co-ordinates external nitrogen source response and morphogenesis in Candida albicans. Microbiology 149:2597–2608

    Article  PubMed  CAS  Google Scholar 

  • Boles E, André B (2004) Role of transporter-like sensors in glucose and amino acid signaling in yeast. Curr Top Genet 6:121–153

    Google Scholar 

  • Booth JL, Vishniac HS (1987) Urease testing and yeast taxonomy. Can J Microbiol 33:396–404

    Article  PubMed  CAS  Google Scholar 

  • Brandriss MC, Magasanik B (1980) Proline: an essential intermediate in arginine degradation in Saccharomyces cerevisiae. J Bacteriol 143:1403–1410

    PubMed  CAS  Google Scholar 

  • Brega E, Zufferey R, Mamoun CB (2004) Candida albicans Csy1p is a nutrient sensor important for activation of amino acid uptake and hyphal morphogenesis. Eukaryot Cell 3:135–143

    Article  PubMed  CAS  Google Scholar 

  • Brown CM, Burn VJ, Johnson B (1973) Presence of glutamate synthase in fission yeasts and its possible role in ammonia assimilation. Nat New Biol 246:115–116

    PubMed  CAS  Google Scholar 

  • Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J, Waterston R, Cohen BA, Johnston M (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301:71–76

    Article  PubMed  CAS  Google Scholar 

  • Coffman JA, Rai R, Loprete DM, Cunningham T, Svetlov V, Cooper TG (1997) Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. J Bacteriol 179:3416–3429

    PubMed  CAS  Google Scholar 

  • Cooper TG (1982) Nitrogen metabolism and gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Cooper TG (2002) Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev 26:223–238

    Article  PubMed  CAS  Google Scholar 

  • Coschigano PW, Magasanik B (1991) The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione s-transferases. Mol Cell Biol 11:822–832

    PubMed  CAS  Google Scholar 

  • Courchesne WE, Magasanik B (1988) Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J Bacteriol 170:708–713

    PubMed  CAS  Google Scholar 

  • Cox KH, Kulkarni A, Tate JJ, Cooper TG (2004) Gln3 phosphorylation and intracellular localization in nutrient limitation and starvation differ from those generated by rapamycin inhibition of Tor1/2 in Saccharomyces cerevisiae. J Biol Chem 279:10270–10278

    Article  PubMed  CAS  Google Scholar 

  • Crespo JL, Hall MN (2002) Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol Mol Biol Rev 66:579–591

    PubMed  CAS  Google Scholar 

  • Crespo JL, Powers T, Fowler B, Hall MN (2002) The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci USA 99:6784–6789

    Article  PubMed  CAS  Google Scholar 

  • De Boer M, Bebelman JP, Goncalves PM, Maat J, Van Heerikhuizen H, Planta RJ (1998) Regulation of expression of the amino acid transporter gene BAP3 in Saccharomyces cerevisiae. Mol Microbiol 30:603–613

    PubMed  Google Scholar 

  • De Craene JO, Soetens O, André B (2001) The Npr1 kinase controls biosynthetic and endocytic sorting of the yeast Gap1 permease. J Biol Chem 276:43939–43948

    PubMed  Google Scholar 

  • Des Etages SA, Falvey DA, Reece RJ, Brandriss MC (1996) Functional analysis of the PUT3 transcriptional activator of the proline utilization pathway in Saccharomyces cerevisiae. Genetics 142:1069–1082

    PubMed  Google Scholar 

  • Des Etages SA, Saxena D, Huang HL, Falvey DA, Barber D, Brandriss MC (2001) Conformational changes play a role in regulating the activity of the proline utilization pathway-specific regulator in Saccharomyces cerevisiae. Mol Microbiol 40:890–899

    PubMed  Google Scholar 

  • Dickinson JR (2000) Pathways of leucine and valine catabolism in yeast. Methods Enzymol 324:80–92

    PubMed  CAS  Google Scholar 

  • Dickinson JR, Lanterman MM, Danner DJ, Pearson BM, Sanz P, Harrison SJ, Hewlins MJ (1997) A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem 272:26871–26878

    PubMed  CAS  Google Scholar 

  • Dickinson JR, Harrison SJ, Hewlins MJ (1998) An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J Biol Chem 273:25751–25756

    Article  PubMed  CAS  Google Scholar 

  • Dickinson JR, Harrison SJ, Dickinson JA, Hewlins MJ (2000) An investigation of the metabolism of isoleucine to active Amyl alcohol in Saccharomyces cerevisiae. J Biol Chem 275:10937–10942

    Article  PubMed  CAS  Google Scholar 

  • Dickinson JR, Salgado LE, Hewlins MJ (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 278:8028–8034

    Article  PubMed  CAS  Google Scholar 

  • Didion T, Regenberg B, Jorgensen MU, Kielland-Brandt MC, Andersen HA (1998) The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol Microbiol 27:643–650

    Article  PubMed  CAS  Google Scholar 

  • Dietrich FS, Voegeli S, Brachat S, Lerch A, Gates K, Steiner S, Mohr C, Pohlmann R, Luedi P, Choi S, Wing RA, Flavier A, Gaffney TD, Philippsen P (2004) The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304:304–307

    Article  PubMed  CAS  Google Scholar 

  • Dorrington RA, Cooper TG (1993) The DAL82 protein of Saccharomyces cerevisiae binds to the DAL upstream induction sequence (UIS). Nucleic Acids Res 21:3777–3784

    PubMed  CAS  Google Scholar 

  • Drillien R, Aigle M, Lacroute F (1973) Yeast mutants pleiotropically impaired in the regulation of the two glutamate dehydrogenases. Biochem Biophys Res Commun 53:367–372

    Article  PubMed  CAS  Google Scholar 

  • Dubois EL, Grenson M (1974) Absence of involvement of glutamine synthetase and of NAD-linked glutamate dehydrogenase in the nitrogen catabolite repression of arginase and other enzymes in Saccharomyces cerevisiae. Biochem Biophys Res Commun 60:150–157

    Article  PubMed  CAS  Google Scholar 

  • Dubois E, Vissers S, Grenson M, Wiame JM (1977) Glutamine and ammonia in nitrogen catabolite repression of Saccharomyces cerevisiae. Biochem Biophys Res Commun 75:233–239

    Article  PubMed  CAS  Google Scholar 

  • Dubois E, Dewaste V, Erneux C, Messenguy F (2000) Inositol polyphosphate kinase activity of Arg82/ArgRIII is not required for the regulation of the arginine metabolism in yeast. FEBS Lett 486:300–304

    Article  PubMed  CAS  Google Scholar 

  • Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, de Montigny J, Marck C, Neuveglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisrame A, Boyer J, Cattolico L, Confanioleri F, de Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wesolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430:35–44

    Article  PubMed  Google Scholar 

  • Dunlop PC, Roon RJ, Even HL (1976) Utilisation of D-asparagine by Saccharomyces cerevisiae. J Bacteriol 125:999–1004

    PubMed  CAS  Google Scholar 

  • Eden A, Simchen G, Benvenisty N (1996) Two yeast homologs of ECA39, a target for c-Myc regulation, code for cytosolic and mitochondrial branched-chain amino acid aminotransferases. J Biol Chem 271:20242–20245

    PubMed  CAS  Google Scholar 

  • Eden A, van Nedervelde L, Drukker M, Benvenisty N, Debourg A (2001) Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast. Appl Microbiol Biotechnol 55:296–300

    Article  PubMed  CAS  Google Scholar 

  • El Alami M, Dubois E, Oudjama Y, Tricot C, Wouters J, Stalon V, Messenguy F (2003) Yeast epiarginase regulation, an enzyme-enzyme activity control: identification of residues of ornithine carbamoyltransferase and arginase responsible for enzyme catalytic and regulatory activities. J Biol Chem 278:21550–21558

    PubMed  Google Scholar 

  • El Bakkoury M, Dubois E, Messenguy F (2000) Recruitment of the yeast MADS-box proteins, ArgRI and Mcm1 by the pleiotropic factor ArgRIII is required for their stability. Mol Microbiol 35:15–31

    PubMed  Google Scholar 

  • Forsberg H, Gilstring CF, Zargari A, Martinez P, Ljungdahl PO (2001) The role of the yeast plasma membrane SPS nutrient sensor in the metabolic response to extracellular amino acids. Mol Microbiol 42:215–228

    Article  PubMed  CAS  Google Scholar 

  • Gaillardin C, Fournier P, Sylvestre G, Heslot H (1976) Mutants of Saccharomycopsis lipolytica defective in lysine catabolism. J Bacteriol 125:48–57

    PubMed  CAS  Google Scholar 

  • Garcia-Lugo P, Gonzalez C, Perdomo G, Brito N, Avila J, de La Rosa JM, Siverio JM (2000) Cloning, sequencing, and expression of H.a.YNR1 and H.a.YNI1, encoding nitrate and nitrite reductases in the yeast Hansenula anomala. Yeast 16:1099–1105

    PubMed  CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:546, 563–547

    Article  PubMed  CAS  Google Scholar 

  • Grenson M (1983a) Inactivation-reactivation process and repression of permease formation regulate several ammonia-sensitive permeases in the yeast Saccharomyces cerevisiae. Eur J Biochem 133:135–139

    PubMed  CAS  Google Scholar 

  • Grenson M (1983b) Study of the positive control of the general amino-acid permease and other ammonia-sensitive uptake systems by the product of the NPR1 gene in the yeast Saccharomyces cerevisiae. Eur J Biochem 133:141–144

    PubMed  CAS  Google Scholar 

  • Grenson M, Hou C, Crabeel M (1970) Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J Bacteriol 103:770–777

    PubMed  CAS  Google Scholar 

  • Grenson M, Dubois E, Piotrowska M, Drillien R, Aigle M (1974) Ammonia assimilation in Saccharomyces cerevisiae as mediated by the two glutamate dehydrogenases. Evidence for the gdhA locus being a structural gene for the NADP-dependent glutamate dehydrogenase. Mol Gen Genet 128:73–85

    Article  PubMed  CAS  Google Scholar 

  • Haguenauer-Tsapis R, André B (2004) Membrane trafficking of yeast transporters: mechanisms and physiological control of downregulation. Curr Top Genet 12:273–323

    Google Scholar 

  • Hawker KL, Montague P, Kinghorn JR (1992) Nitrate reductase and nitrite reductase transcript levels in various mutants of Aspergillus nidulans: confirmation of autogenous regulation. Mol Gen Genet 231:485–488

    Article  PubMed  CAS  Google Scholar 

  • Hein C, Springael JY, Volland C, Haguenauer-Tsapis R, André B (1995) NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol Microbiol 18:77–87

    Article  PubMed  CAS  Google Scholar 

  • Helliwell SB, Losko S, Kaiser CA (2001) Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J Cell Biol 153:649–662

    Article  PubMed  CAS  Google Scholar 

  • Hoe KL, Won MS, Yoo OJ, Yoo HS (1996) Molecular cloning of GAF2, a Schizosaccharomyces pombe GATA factor, which has two zinc-finger sequences. Biochem Mol Biol Int 39:127–135

    PubMed  CAS  Google Scholar 

  • Holmberg S, Schjerling P (1996) Cha4p of Saccharomyces cerevisiae activates transcription via serine/threonine response elements. Genetics 144:467–478

    PubMed  CAS  Google Scholar 

  • Huang HL, Brandriss MC (2000) The regulator of the yeast proline utilization pathway is differentially phosphorylated in response to the quality of the nitrogen source. Mol Cell Biol 20:892–899

    PubMed  CAS  Google Scholar 

  • Imada A, Igarasi S, Nakahama K, Isono M (1973) Asparaginase and glutaminase activities of microorganisms. J Gen Microbiol 76:85–99

    PubMed  CAS  Google Scholar 

  • Iraqui I, Vissers S, Cartiaux M, Urrestarazu A (1998) Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily. Mol Gen Genet 257:238–248

    PubMed  CAS  Google Scholar 

  • Iraqui I, Vissers S, André B, Urrestarazu A (1999a) Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae. Mol Cell Biol 19:3360–3371

    PubMed  CAS  Google Scholar 

  • Iraqui I, Vissers S, Bernard F, de Craene JO, Boles E, Urrestarazu A, André B (1999b) Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol Cell Biol 19:989–1001

    PubMed  CAS  Google Scholar 

  • Jauniaux JC, Grenson M (1990) GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem 190:39–44

    Article  PubMed  CAS  Google Scholar 

  • Jauniaux JC, Urrestarazu LA, Wiame JM (1978) Arginine metabolism in Saccharomyces cerevisiae: subcellular localization of the enzymes. J Bacteriol 133:1096–1107

    PubMed  CAS  Google Scholar 

  • Jones GE (1977) Genetic and physiological relationships between L-asparaginase I and asparaginase II in Saccharomyces cerevisiae. J Bacteriol 130:128–130

    PubMed  CAS  Google Scholar 

  • Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 101:7329–7334

    PubMed  CAS  Google Scholar 

  • Jorgensen MU, Bruun MB, Didion T, Kielland-Brandt MC (1998) Mutations in five loci affecting GAP1-independent uptake of neutral amino acids in yeast. Yeast 14:103–114

    PubMed  CAS  Google Scholar 

  • Kadosh D, Struhl K (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89:365–371 22

    Article  PubMed  CAS  Google Scholar 

  • Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254

    Article  PubMed  CAS  Google Scholar 

  • Kellis M, Patterson N, Birren B, Berger B, Lander ES (2004) Methods in comparative genomics: genome correspondence, gene identification and regulatory motif discovery. J Comput Biol 11:319–355

    Article  PubMed  CAS  Google Scholar 

  • Kispal G, Steiner H, Court DA, Rolinski B, Lill R (1996) Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogeneregulated Eca39 protein. J Biol Chem 271:24458–24464

    Article  PubMed  CAS  Google Scholar 

  • Kitamoto K, Yoshizawa K, Ohsumi Y, Anraku Y (1988) Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae. J Bacteriol 170:2683–2686

    PubMed  CAS  Google Scholar 

  • Klasson H, Fink GR, Ljungdahl PO (1999) Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol Cell Biol 19:5405–5416

    PubMed  CAS  Google Scholar 

  • Kradolfer P, Niederberger P, Hutter R (1982) Tryptophan degradation in Saccharomyces cerevisiae: characterization of two aromatic aminotransferases. Arch Microbiol 133:242–248

    Article  PubMed  CAS  Google Scholar 

  • Large P (1986) Degradation of organic nitrogen compounds by yeasts. Yeast 2:1–34

    Article  CAS  Google Scholar 

  • LaRue TA, Spencer JF (1968) The utilization of purines and pyrimidines by yeasts. Can J Microbiol 14:79–86

    Article  PubMed  CAS  Google Scholar 

  • Legrain C, Vissers S, Dubois E, Legrain M, Wiame JM (1982) Regulation of glutamine synthetase from Saccharomyces cerevisiae by repression, inactivation and proteolysis. Eur J Biochem 123:611–616

    PubMed  CAS  Google Scholar 

  • Limjindaporn T, Khalaf RA, Fonzi WA (2003) Nitrogen metabolism and virulence of Candida albicans require the GATA-type transcriptional activator encoded by GAT1. Mol Microbiol 50:993–1004

    Article  PubMed  CAS  Google Scholar 

  • Machin F, Medina B, Navarro FJ, Perez MD, Veenhuis M, Tejera P, Lorenzo H, Lancha A, Siverio JM (2004) The role of Ynt1 in nitrate and nitrite transport in the yeast Hansenula polymorpha. Yeast 21:265–276

    PubMed  CAS  Google Scholar 

  • Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1–18

    Article  PubMed  CAS  Google Scholar 

  • Marini AM, Soussi-Boudekou S, Vissers S, André B (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17:4282–4293

    PubMed  CAS  Google Scholar 

  • Matijekova A, Sychrova H (1997) Biogenesis of Candida albicans Can1 permease expressed in Saccharomyces cerevisiae. FEBS Lett 408:89–93

    PubMed  CAS  Google Scholar 

  • McNeil JB, Zhang F, Taylor BV, Sinclair DA, Pearlman RE, Bognar AL (1997) Cloning, and molecular characterization of the GCV1 gene encoding the glycine cleavage T-protein from Saccharomyces cerevisiae. Gene 186:13–20

    Article  PubMed  CAS  Google Scholar 

  • Messenguy F, Dubois E (2000) Regulation of arginine metabolism: a network of specific and pleiotropic proteins in response to multiple environmental signals. Food Technol Biotechnol 38:277–285

    CAS  Google Scholar 

  • Messenguy F, Wiame J (1969) The control of ornithinetranscarbamylase activity by arginase in Saccharomyces cerevisiae. FEBS Lett 3:47–49

    Article  PubMed  CAS  Google Scholar 

  • Messenguy F, Colin D, ten Have JP (1980) Regulation of compartmentation of amino acid pools in Saccharomyces cerevisiae and its effects on metabolic control. Eur J Biochem 108:439–447

    Article  PubMed  CAS  Google Scholar 

  • Messenguy F, Dubois E, Boonchird C (1991) Determination of the DNA-binding sequences of ARGR proteins to arginine anabolic and catabolic promoters. Mol Cell Biol 11:2852–2863

    PubMed  CAS  Google Scholar 

  • Messenguy F, Vierendeels F, Scherens B, Dubois E (2000) Saccharomyces cerevisiae, expression of arginine catabolic genes CAR1 and CAR2 in response to exogenous nitrogen availability is mediated by the Ume6 (CargRI)-Sin3 (CargRII)-Rpd3 (CargRIII) complex. J Bacteriol 182:3158–3164

    Article  PubMed  CAS  Google Scholar 

  • Moreira JM, Holmberg S (1998) Nucleosome structure of the yeast CHA1 promoter: analysis of activation-dependent chromatin remodeling of an RNA-polymerase-II-transcribed gene in TBP and RNA pol II mutants defective in vivo in response to acidic activators. EMBO J 17:6028–6038

    Article  PubMed  CAS  Google Scholar 

  • Moreira JM, Holmberg S (1999) Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC. EMBO J 18:2836–2844

    Article  PubMed  CAS  Google Scholar 

  • Nagarajan L, Storms RK (1997) Molecular characterization of GCV3, the Saccharomyces cerevisiae gene coding for the glycine cleavage system hydrogen carrier protein. J Biol Chem 272:4444–4450

    PubMed  CAS  Google Scholar 

  • Navarro FJ, Perdomo G, Tejera P, Medina B, Machin F, Guillen RM, Lancha A, Siverio JM (2003) The role of nitrate reductase in the regulation of the nitrate assimilation pathway in the yeast Hansenula polymorpha. FEMS Yeast Res 4:149–155

    PubMed  CAS  Google Scholar 

  • Nikko E, Marini AM, André B (2003) Permease recycling and ubiquitination status reveal a particular role for Bro1 in the multivesicular body pathway. J Biol Chem 278:50732–50743

    Article  PubMed  CAS  Google Scholar 

  • Omura F, Kodama Y, Ashikari T (2001) The N-terminal domain of the yeast permease Bap2p plays a role in its degradation. Biochem Biophys Res Commun 287:1045–1050

    Article  PubMed  CAS  Google Scholar 

  • Park HD, Scott S, Rai R, Dorrington R, Cooper TG (1999) Synergistic operation of the CAR2 (Ornithine transaminase) promoter elements in Saccharomyces cerevisiae. J Bacteriol 181:7052–7064

    PubMed  CAS  Google Scholar 

  • Petersen JG, Kielland-Brandt MC, Nilsson-Tillgren T, Bornaes C, Holmberg S (1988) Molecular genetics of serine and threonine catabolism in Saccharomyces cerevisiae. Genetics 119:527–534

    PubMed  CAS  Google Scholar 

  • Prohl C, Kispal G, Lill R (2000) Branched-chain-amino-acid transaminases of yeast Saccharomyces cerevisiae. Methods Enzymol 324:365–375

    PubMed  CAS  Google Scholar 

  • Rai R, Genbauffe FS, Cooper TG (1988) Structure and transcription of the allantoate permease gene (DAL5) from Saccharomyces cerevisiae. J Bacteriol 170:266–271

    PubMed  CAS  Google Scholar 

  • Rai R, Daugherty JR, Cunningham TS, Cooper TG (1999) Overlapping positive and negative GATA factor binding sites mediate inducible DAL7 gene expression in Saccharomyces cerevisiae. J Biol Chem 274:28026–28034

    Article  PubMed  CAS  Google Scholar 

  • Rai R, Tate JJ, Cooper TG (2003) Ure2, a prion precursor with homology to glutathione Stransferase, protects Saccharomyces cerevisiae cells from heavy metal ion and oxidant toxicity. J Biol Chem 278:12826–12833

    Article  PubMed  CAS  Google Scholar 

  • Ramos F, Wiame JM (1982) Occurrence of a catabolic L-serine (L-threonine) deaminase in Saccharomyces cerevisiae. Eur J Biochem 123:571–576

    PubMed  CAS  Google Scholar 

  • Ramos F, el Guezzar M, Grenson M, Wiame JM (1985) Mutations affecting the enzymes involved in the utilization of 4-aminobutyric acid as nitrogen source by the yeast Saccharomyces cerevisiae. Eur J Biochem 149:401–404

    Article  PubMed  CAS  Google Scholar 

  • Regenberg B, Holmberg S, Olsen LD, Kielland-Brandt MC (1998) Dip5p mediates highaffinity and high-capacity transport of L-glutamate and L-aspartate in Saccharomyces cerevisiae. Curr Genet 33:171–177

    Article  PubMed  CAS  Google Scholar 

  • Regenberg B, During-Olsen L, Kielland-Brandt MC, Holmberg S (1999) Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Curr Genet 36:317–328

    Article  PubMed  CAS  Google Scholar 

  • Roberg KJ, Bickel S, Rowley N, Kaiser CA (1997a) Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8. Genetics 147:1569–1584

    PubMed  CAS  Google Scholar 

  • Roberg KJ, Rowley N, Kaiser CA (1997b) Physiological regulation of membrane protein sorting late in the secretory pathway of Saccharomyces cerevisiae. J Cell Biol 137:1469–1482

    Article  PubMed  CAS  Google Scholar 

  • Rohde JR, Cardenas ME (2004) Nutrient signaling through TOR kinases controls gene expression and cellular differentiation in fungi. Curr Top Microbiol Immunol 279:53–72

    PubMed  CAS  Google Scholar 

  • Roon RJ, Even HL, Larimore F (1974) Glutamate synthase: properties of the reduced nicotinamide adenine dinucleotide-dependent enzyme from Saccharomyces cerevisiae. J Bacteriol 118:89–95

    PubMed  CAS  Google Scholar 

  • Ross J, Reid GA, Dawes IW (1988) The nucleotide sequence of the LPD1 gene encoding lipoamide dehydrogenase in Saccharomyces cerevisiae: comparison between eukaryotic and prokaryotic sequences for related enzymes and identification of potential upstream control sites. J Gen Microbiol 134:1131–1139

    PubMed  CAS  Google Scholar 

  • Saxena D, Kannan KB, Brandriss MC (2003) Rapamycin treatment results in GATA factorindependent hyperphosphorylation of the proline utilization pathway activator in Saccharomyces cerevisiae. Eukaryot Cell 2:552–559

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Hall MN, Koller A (1994) Two FK506 resistance-conferring genes in Saccharomyces cerevisiae, TAT1 and TAT2, encode amino acid permeases mediating tyrosine and tryptophan uptake. Mol Cell Biol 14:6597–6606

    PubMed  CAS  Google Scholar 

  • Schmidt A, Beck T, Koller A, Kunz J, Hall MN (1998) The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease. EMBO J 17:6924–6931

    PubMed  CAS  Google Scholar 

  • Schreve JL, Sin JK, Garrett JM (1998) The Saccharomyces cerevisiae YCC5 (YCL025c) gene encodes an amino acid permease, Agp1, which transports asparagine and glutamine. J Bacteriol 180:2556–2559

    PubMed  CAS  Google Scholar 

  • Scott S, Dorrington R, Svetlov V, Beeser AE, Distler M, Cooper TG (2000) Functional domain mapping and subcellular distribution of Dal82p in Saccharomyces cerevisiae. J Biol Chem 275:7198–7204

    PubMed  CAS  Google Scholar 

  • Seeliger H (1956) Use of urease test for the screening and identification of Cryptococci. J Bacteriol 72:127–131

    PubMed  CAS  Google Scholar 

  • Sen K, Komagata K (1979) Distribution of urease and extracellular DNAse in yeast species. J Gen Appl Microbiol 25:127–135

    CAS  Google Scholar 

  • Serrani F, Rossi B, Berardi E (2001) Nitrogen metabolite repression in Hansenula polymorpha: the nmrl-l mutation. Curr Genet 40:243–250

    Article  PubMed  CAS  Google Scholar 

  • Sinclair DA, Dawes IW (1995) Genetics of the synthesis of serine from glycine and the utilization of glycine as sole nitrogen source by Saccharomyces cerevisiae. Genetics 140:1213–1222

    PubMed  CAS  Google Scholar 

  • Sinclair DA, Hong SP, Dawes IW (1996) Specific induction by glycine of the gene for the Psubunit of glycine decarboxylase from Saccharomyces cerevisiae. Mol Microbiol 19:611–623

    Article  PubMed  CAS  Google Scholar 

  • Siverio JM (2002) Assimilation of nitrate by yeasts. FEMS Microbiol Rev 26:277–284

    Article  PubMed  CAS  Google Scholar 

  • Soetens O, de Craene JO, André B (2001) Ubiquitin is required for sorting to the vacuole of the yeast general amino acid permease, Gap1. J Biol Chem 276:43949–43957

    Article  PubMed  CAS  Google Scholar 

  • Souciet J, Aigle M, Artiguenave F, Blandin G, Bolotin-Fukuhara M, Bon E, Brottier P, Casaregola S, de Montigny J, Dujon B, Durrens P, Gaillardin C, Lepingle A, Llorente B, Malpertuy A, Neuveglise C, Ozier-Kalogeropoulos O, Potier S, Saurin W, Tekaia F, Toffano-Nioche C, Wesolowski-Louvel M, Wincker P, Weissenbach J (2000) Genomic exploration of the hemiascomycetous yeasts. 1. A set of yeast species for molecular evolution studies. FEBS Lett 487:3–12

    Article  PubMed  Google Scholar 

  • Soussi-Boudekou S, Vissers S, Urrestarazu A, Jauniaux JC, André B (1997) Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae. Mol Microbiol 23:1157–1168

    Article  PubMed  CAS  Google Scholar 

  • Springael JY, André B (1998) Nitrogen-regulated ubiquitination of the Gap1 permease of Saccharomyces cerevisiae. Mol Biol Cell 9:1253–1263

    PubMed  CAS  Google Scholar 

  • Stanbrough M, Magasanik B (1995) Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae. J Bacteriol 177:94–102

    PubMed  CAS  Google Scholar 

  • Strich R, Surosky RT, Steber C, Dubois E, Messenguy F, Esposito RE (1994) UME6 is a key regulator of nitrogen repression and meiotic development. Genes Dev 8:796–810

    PubMed  CAS  Google Scholar 

  • Sumrada RA, Cooper TG (1982) Urea carboxylase and allophanate hydrolase are components of a multifunctional protein in yeast. J Biol Chem 257:9119–9127

    PubMed  CAS  Google Scholar 

  • Sychrova H, Souciet JL (1994) CAN1, a gene encoding a permease for basic amino acids in Candida albicans. Yeast 10:1647–1651

    Article  PubMed  CAS  Google Scholar 

  • Sychrova H, Chevallier MR, Horak J, Kotyk A (1992) Thialysine-resistant mutants and uptake of lysine in Schizosaccharomyces pombe. Curr Genet 21:351–355

    PubMed  CAS  Google Scholar 

  • Talibi D, Grenson M, André B (1995) Cis-and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae. Nucleic Acids Res 23:550–557

    PubMed  CAS  Google Scholar 

  • Tempest DW, Meers JL, Brown CM (1970) Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route. Biochem J 117:405–407

    PubMed  CAS  Google Scholar 

  • Ter Schure EG, Sillje HH, Vermeulen EE, Kalhorn JW, Verkleij AJ, Boonstra J, Verrips CT (1998) Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogenlimited continuous cultures of Saccharomyces cerevisiae. Microbiology 144:1451–1462

    PubMed  Google Scholar 

  • Umebayashi K, Nakano A (2003) Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane. J Cell Biol 161:1117–1131

    Article  PubMed  CAS  Google Scholar 

  • Urrestarazu A, Vissers S, Iraqui I, Grenson M (1998) Phenylalanine-and tyrosineauxotrophic mutants of Saccharomyces cerevisiae impaired in transamination. Mol Gen Genet 257:230–237

    PubMed  CAS  Google Scholar 

  • Van Huffel C, Dubois E, Messenguy F (1994) Cloning and sequencing of Schizosaccharomyces pombe car1 gene encoding arginase. Expression of the arginine anabolic and catabolic genes in response to arginine and related metabolites. Yeast 10:923–933

    PubMed  Google Scholar 

  • Vandenbol M, Jauniaux JC, Grenson M (1989) Nucleotide sequence of the Saccharomyces cerevisiae PUT4 proline-permease-encoding gene: similarities between CAN1, HIP1 and PUT4 permeases. Gene 83:153–159

    Article  PubMed  CAS  Google Scholar 

  • Vandenbol M, Jauniaux JC, Grenson M (1990) The Saccharomyces cerevisiae NPR1 gene required for the activity of ammonia-sensitive amino acid permeases encodes a protein kinase homologue. Mol Gen Genet 222:393–399

    Article  PubMed  CAS  Google Scholar 

  • Vissers S, Urrestarazu A, Jauniaux JC, Wiame JM (1982) Inhibition of ornithine carbamoyltransferase by arginase among yeasts: correlation with energy production, subcellular localization and enzyme synthesis. J Gen Microbiol 128:1235–1247

    CAS  Google Scholar 

  • Vuralhan Z, Morais MA, Tai SL, Piper MD, Pronk JT (2003) Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl Environ Microbiol 69:4534–4541

    Article  PubMed  CAS  Google Scholar 

  • Wang SS, Brandriss MC (1987) Proline utilization in Saccharomyces cerevisiae: sequence, regulation, and mitochondrial localization of the PUT1 gene product. Mol Cell Biol 7:4431–4440

    PubMed  CAS  Google Scholar 

  • Weisman R, Choder M (2001) The fission yeast TOR homolog, tor1+, is required for the response to starvation and other stresses via a conserved serine. J Biol Chem 276:7027–7032

    PubMed  CAS  Google Scholar 

  • Whitney PA, Cooper TG (1972) Urea carboxylase and allophanate hydrolase. Two components of adenosine triphosphate:urea amido-lyase in Saccharomyces cerevisiae. J Biol Chem 247:1349–1353

    PubMed  CAS  Google Scholar 

  • Wiame JM, Grenson M, Arst HN Jr (1985) Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Microb Physiol 26:1–88

    PubMed  CAS  Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    PubMed  CAS  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O’Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schafer M, Muller-Auer S, Gabel C, Fuchs M, Dusterhoft A, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dreano S, Gloux S, Lelaure V, Mottier S, Galibert F, Aves SJ, Xiang Z, Hunt C, Moore K, Hurst SM, Lucas M, Rochet M, Gaillardin C, Tallada VA, Garzon A, Thode G, Daga RR, Cruzado L, Jimenez J, Sanchez M, del Rey F, Benito J, Dominguez A, Revuelta JL, Moreno S, Armstrong J, Forsburg SL, Cerutti L, Lowe T, McCombie WR, Paulsen I, Potashkin J, Shpakovski GV, Ussery D, Barrell BG, Nurse P (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880

    PubMed  CAS  Google Scholar 

  • Yoo HS, Cooper TG (1991) The ureidoglycollate hydrolase (DAL3) gene in Saccharomyces cerevisiae. Yeast 7:693–698

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto H, Fukushige T, Yonezawa T, Sone H (2002) Genetic and physiological analysis of branched-chain alcohols and isoamyl acetate production in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 59:501–508

    PubMed  CAS  Google Scholar 

  • Zhu X, Garrett J, Schreve J, Michaeli T (1996) GNP1, the high-affinity glutamine permease of S. cerevisiae. Curr Genet 30:107–114

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Messenguy, F., André, B., Dubois, E. (2006). Diversity of Nitrogen Metabolism Among Yeast Species: Regulatory and Evolutionary Aspects. In: Péter, G., Rosa, C. (eds) Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30985-3_7

Download citation

Publish with us

Policies and ethics