Skip to main content

Computing and Displaying Intermolecular Negative Volume for Docking

  • Conference paper

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

Protein docking is a Grand Challenge problem that is crucial to our understanding of biochemical processes. Several protein docking algorithms use shape complementarity as the primary criterion for evaluating the docking candidates. The intermolecular volume and area between docked molecules is useful as a measure of the shape complementarity. In this paper we discuss an algorithm for interactively computing intermolecular negative volume and the area of docking site using graphics hardware. We also present the design considerations for building an interactive 3D visualization tool for visualizing intermolecular negative volumes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. L. Connolly. Solvent-accessible surfaces of proteins and nucleic acids. Science, 221:709–713, 1983.

    Google Scholar 

  2. M. L. Connolly. Shape complementarity at the hemoglobin a1b1 subunit interface. Biopolymers, 25:1229–1247, 1986.

    Article  Google Scholar 

  3. G. Domik and G. Fels. HotDock: An interactive approach to molecular docking, 1996. http://www.uni-paderborn.de/lst/HotDock/.

    Google Scholar 

  4. H. Edelsbrunner, M. A. Facello, and J. Liang. On the definition and the construction of pockets in macromolecules. Discrete Applied Mathematics, 88(4):83–102, 1998.

    MathSciNet  Google Scholar 

  5. H. Edelsbrunner, J. Liang, and C. Woodward. Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Science, 7(9):1884–1897, 1998.

    Google Scholar 

  6. R. Hawkes, S. Rushton, and M. Smyth. Update rates and fidelity in virtual environments. Virtual Reality: Research, Applications and Design, 1(2):46–51, 1995.

    Google Scholar 

  7. S. Jones and J. M. Thornton. Principles of protein-protein interactions. In Proc. Natl. Acad. Sci. USA, volume 93, pp. 13–20, 1996.

    Google Scholar 

  8. E. Katchalski-Katzir, I. Shariv, M. Eisenstein, A. A. Friesem, C. Aflalo, and I. A. Vakser. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. In Proceedings of the National Academy of Sciences of United States of America, volume 89, pp. 2195–2199, March 1992.

    Google Scholar 

  9. O. Kreylos, N. L. Max, B. Hamann, S. N. Crivelli, and E. W. Behel. Interactive protein manipulation. In Proceedings of the IEEE Visualization, pp. 581–588, Seattle, Washington, October 2003.

    Google Scholar 

  10. I. D. Kuntz. Structure-based strategies for drug design and discovery. Science, 257:1078–1082, 1992.

    Google Scholar 

  11. R. A. Laskowski. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. Journal of Molecular Graphics, 13(5):323–330, 1995.

    Article  Google Scholar 

  12. M. C. Lawrence and P. M. Colman. Shape complementarity at protein/protein interfaces. Journal of Molecular Biology, 234(4):946–950, 1993.

    Article  Google Scholar 

  13. W. E. Lorensen and H. E. Cline. Marching cubes: a high resolution 3d surface construction algorithm. In Proceedings of SIGGRAPH, pp. 163–169, July 1987.

    Google Scholar 

  14. K. Nadassy, I. Tomas-Oliveira, I. Alberts J., Janin, and S. J. Wodak. Standard atomic volumes in double-stranded DNA and packing in protein-DNA interfaces. Nucleic Acids Research, 29(16):3362–3376, 2001.

    Article  Google Scholar 

  15. A. Olson. Tangible interfaces for molecular biology. In Demos at the IEEE Visualization, page D12, Seattle, Washington, October 2003.

    Google Scholar 

  16. F. M. Richards. Areas, volumes, packing and protein structures. In Annual Review of Biophysics and Bioengineering, volume 6, pp. 151–176, 1977.

    Article  Google Scholar 

  17. G. J. F. Smets and K. J. Overbeeke. Trade-off between resolution and interactivity in spatial task performance. IEEE Computer Graphics and Applications, 15(5):46–51, 1995.

    Article  Google Scholar 

  18. A. Varshney, F. P. Brooks Jr., D. C. Richardson, W. V. Wright, and D. Manocha. Defining, computing, and visualizing molecular interfaces. In IEEE Visualization, pp. 36–43, October 1995.

    Google Scholar 

  19. E. A. Wintner and C. C. Moallemi. Quantized surface complementarity diversity (QSCD): A model based on small molecule-target complementarity. Journal of Medicinal Chemistry, 43:1993–2006, 2000.

    Article  Google Scholar 

  20. J. M. Word, S. C. Lovell, T. H. LaBean, H. C. Taylor, M. E. Zalis, B. K. Presley, J. S. Richardson, and D. C. Richardson. Visualizing and quantifying molecular goodness-offit: Small-probe contact dots with explicit hydrogen atoms. Journal of Molecular Biology, 285(4):1711–1733, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, C.H., Varshney, A. (2006). Computing and Displaying Intermolecular Negative Volume for Docking. In: Bonneau, GP., Ertl, T., Nielson, G.M. (eds) Scientific Visualization: The Visual Extraction of Knowledge from Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30790-7_4

Download citation

Publish with us

Policies and ethics