Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.7 Literature

  • Abrams DS, Prausnitz JM (1975). Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE Journal 21, 116–128.

    Article  CAS  Google Scholar 

  • Agreda VH, et al. (1990). High-purity methyl acetate via reactive distillation. Chemical Engineering Progress, 40–46.

    Google Scholar 

  • Basmadjian D, Coroyannakis P (1987). Equilibrium-theory revisited-Isothermal fixed-bed sorption of binary-systems. 1. Solutes obeying the binary langmuir isotherm. Chemical Engineering Science 42, 1723–1735.

    Article  CAS  Google Scholar 

  • Basmadjian D, et al. (1987a). Equilibrium-theory revisted-Isothermal fixed-bed sorption of binary-systems. 2. Non-langmuir solutes with type-I parent isotherms-Azeotropic systems. Chemical Engineering Science 42, 1737–1752.

    Article  CAS  Google Scholar 

  • Basmadjian D, et al. (1987b). Equilibrium-theory revisited — Isothermal fixed-bed sorption of binary-systems. 3. Solutes with type-I, type-II and type-IV parent isotherms — Phase-separation phenomena. Chemical Engineering Science 42, 1753–1764.

    Article  CAS  Google Scholar 

  • Baur R, Krishna R (2004). Distillation column with reactive pump arounds: An alternative to reactive distillation. Chemical Engineering and Processing 43, 435–445.

    Article  CAS  Google Scholar 

  • Bearns M, et al. (1999). Chemische Reaktionstechnik, 3rd edn. New York: Georg Thieme Verlag.

    Google Scholar 

  • Beckmann A, et al. (2002). Industrial experience in the scale-up of reactive distillation with examples from C4-chemistry. Chemical Engineering Science 57, 1525–1530.

    Article  CAS  Google Scholar 

  • Bedenik NI, et al. (2004). An integrated strategy for the hierarchical multilevel MINLP synthesis of overall process flowsheets using the combined synthesis/analysis approach. Computers & Chemical Engineering 28, 693–706.

    Article  CAS  Google Scholar 

  • Behr A, Urschey M (2003). Palladium-catalyzed telomerization of butadiene with ethylene glycol in liquid single phase and biphasic systems: control of selectivity and catalyst recycling. Journal of Molecular Catalysis a-Chemical 197, 101–113.

    Article  CAS  Google Scholar 

  • Beßling B, et al. (1997). Experiments of the homogeneous transesterifcation of ethyl acetate with methanol. In Technical Report of the Brite EuRam Project “Reactive Distillation” (Project No BE95-1335).

    Google Scholar 

  • Beßling B (1998). Zur Reaktivdestillation in der Prozeßsynthese. Dr.-Ing. Dissertation, Fachbereich Chemietechnik, Universität Dortmund.

    Google Scholar 

  • Bessling B, et al. (1997). Design of processes with reactive distillation line diagrams. Industrial and Engineering Chemistry Research 36, 3032–3042.

    Article  CAS  Google Scholar 

  • Bessling B, et al. (1998). Investigations on the synthesis of methyl acetate in a heterogeneous reactive distillation process. Chemical Engineering Technology 21, 393–400.

    Article  CAS  Google Scholar 

  • Blass E (1997). Entwicklung verfahrenstechnischer Prozesse, 2. Auflage Berlin, Heidelberg: Springer Verlag.

    Google Scholar 

  • Borren T, Schmidt-Traub H (2004). Vergleich chromatographischer Reaktorkonzepte. Chemie Ingenieur Technik 76, 805–814.

    Article  CAS  Google Scholar 

  • Brooke A, et al. (2003). GAMS-A User’s Guide. Edited by GAMS Development Corp. W.

    Google Scholar 

  • Bühner C (2001). Ein Beitrag zur Auswahl von Reaktoren für mehrphasige Reaktionssysteme. Dr.-Ing. Dissertation, Fachbereich Chemietechnik, Universität Dortmund.

    Google Scholar 

  • Camacho-Rubio F, et al. (1996). A comparative study of the activity of free and immobilized enzymes and its application to glucose isomerase. Chemical Engineering Science 51, 4159–4165.

    Article  CAS  Google Scholar 

  • Cardoso MF, et al. (2000). Optimization of reactive distillation processes with simulated annealing. Chemical Engineering Science 55, 5059–5078.

    Article  CAS  Google Scholar 

  • Ciric AR, Gu DY (1994). Synthesis of Nonequilibrium Reactive Distillation Processes by Minlp Optimization. AIChE Journal 40, 1479–1487

    Article  CAS  Google Scholar 

  • Citro F, Lee JW (2004). Widening the applicability of reactive distillation technology by using concurrent design. Industrial and Engineering Chemistry Research 43, 375–383.

    Article  CAS  Google Scholar 

  • Clark FD, Lorenzoni AB (1978). Applied cost engineering. New York: Dekker.

    Google Scholar 

  • CONOPT (2003). ARKI Consulting and Development. http://www.gams.com.

  • Converti A, Del Borghi M (1998). Kinetics of glucose isomerization to fructose by immobilized glucose isomerase in the presence of substrate protection. Bioprocess Engineering 18, 27–33.

    Article  CAS  Google Scholar 

  • Cookbook (2003). Process Design Center B. V. Breda, The Netherlands.

    Google Scholar 

  • Cronewitz T, et al. (2000). Fructose. In Ullmann’s Enyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.

    Google Scholar 

  • Daichendt MM, Grossmann IE (1998). Integration of hierarchical decomposition and mathematical programming for the synthesis of process flowsheets. Computers & Chemical Engineering 22, 147–175.

    Article  CAS  Google Scholar 

  • Doherty MF, Perkins JD (1978a). On the dynamics of distillation processes-I. The simple distillation of multicomponent non-reacting, homogeneous liquid mixtures. Chemical Engineering Science 33, 281–301.

    Article  CAS  Google Scholar 

  • Doherty MF, Perkins JD (1978b). On the dynamics of distillation processes-II. The simple distillation of model solutions. Chemical Engineering Science 33, 569–578.

    Article  CAS  Google Scholar 

  • Doherty MF, Buzad G (1992). Reactive distillation by design. Transactions of the Institution of Chemical Engineers 70, 448–458.

    CAS  Google Scholar 

  • Douglas JM (1988). Conceptual design of chemical processes. New York: McGraw-Hill.

    Google Scholar 

  • Dröge T (1996). Auswahl technisch einsetzbarer Reaktoren. Dr.-Ing. Dissertation, Fachbereich Chemietechnik, Universität Dortmund.

    Google Scholar 

  • Dye SR (1995). Fractional crystallization: Design alternatives and tradeoffs. AIChE Journal 41, 2427–2438.

    Article  Google Scholar 

  • Fredenslund A, et al. (1975). Group-contribution estimation of activitycoefficients in nonideal liquid-mixtures. AIChE Journal 21, 1086–1099.

    Article  CAS  Google Scholar 

  • Frey T, Stichlmair J (2000). MINLP optimization of reactive distillation columns. In ESCAPE (European Symposium on Computer Aided Process Engineering), pp. 115–120. Edited by Pierucci S.

    Google Scholar 

  • Frey T (2001). Synthese und Optimierung von Reaktivrektifikationsprozessen. Dr.-Ing. Dissertation, Technische Universität München.

    Google Scholar 

  • Fricke J (2005). Entwicklung einer Auslegungsmethode für chromatographische SMB-Reaktoren. Dr.-Ing. Dissertation, Fachbereich Bio-und Chemieingenieurwesen, Universität Dortmund.

    Google Scholar 

  • Fried B (1991). Regelbasierte Auswahl grundlegender Reaktortypen mittels wissensbasierter Programmierung. Dr.-Ing. Dissertation, Fachbereich Chemietechnik, Universität Dortmund.

    Google Scholar 

  • Gmehling J, et al. (1979). Selection of solvents for the extractive rectification by precalculated equilibrium data. Berichte der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 83, 1133–1136.

    Google Scholar 

  • Gmehling J, Kolbe B (1992). Thermodynamik: VHC Verlagsgesellschaft.

    Google Scholar 

  • Grassmann P (1971). Physical principles of chemical engineering, 1st english edn. Oxford, New York: Pergamon Press.

    Google Scholar 

  • Grossmann IE, et al. (2005). Optimal synthesis of complex distillation columns using rigorous models. Computers & Chemical Engineering 29, 1203–1215.

    Article  CAS  Google Scholar 

  • Grüner SK, A. (2004). Equilibrium theory and nonlinear waves for reactive distillation columns and chromatographic reactors. Chemical Engineering Science 59, 901–918.

    Article  Google Scholar 

  • Harmsen GJ (2004). Industrial best practices of conceptual process design. Chemical Engineering and Processing 43, 677–681.

    Article  Google Scholar 

  • Hashimoto K, et al. (1983). A new process combining adsorption and enzyme reaction for producing higher-fructose syrup. Biotechnology and Bioengineering 25, 2371–2393.

    Article  CAS  Google Scholar 

  • Hostrup M, et al. (2001). Integration of thermodynamic insights and MINLP optimization for the synthesis, design and analysis of process flowsheets. Computers & Chemical Engineering 25, 73–83.

    Article  CAS  Google Scholar 

  • Huang YS, et al. (2004). Residue curve maps of reactive membrane separation. Chemical Engineering Science 59, 2863–2879.

    Article  CAS  Google Scholar 

  • Hugo P (1965). Die Berechnung des chemischen Umsatzes von Mehrkomponenten-Gasgemischen an porösen Katalysatoren — I. Das Strömungsrohr ohne Diffusionseinfluss. Chemical Engineering Science 20, 187–194.

    Article  CAS  Google Scholar 

  • Ismail SR, et al. (1999). Synthesis of reactive and combined reactor separation systems utilizing a mass heat exchange transfer module. Chemical Engineering Science 54, 2721–2729.

    Article  CAS  Google Scholar 

  • Jackson JR, Grossmann IE (2001). A disjunctive programming approach for the optimal design of reactive distillation columns. Computers & Chemical Engineering 25, 1661–1673.

    Article  CAS  Google Scholar 

  • Jakobsson K, et al. (2002). Modelling of a side reactor configuration combining reaction and distillation. Chemical Engineering Science 57, 1521–1524.

    Article  CAS  Google Scholar 

  • Jupke A, et al. (2002). Optimal design of batch and simulation moving bed chromatographic separation processes. Journal of Chromatography A 944, 93–117.

    Article  CAS  Google Scholar 

  • Kienle A, et al. (2005). Zur Integration von Reaktion und Stofftrennung. Chemie Ingenieur Technik 77, 1417–1429.

    Article  CAS  Google Scholar 

  • Levenspiel O (1996). The chemical reactor omnibook. Corvallis, Or.: Distributed by OSU Book Stores.

    Google Scholar 

  • Levenspiel O (1999). Chemical reaction engineering, 3rd edn. New York: Wiley.

    Google Scholar 

  • Myerson AS (2002). Handbook of industrial crystallization, 2nd edn. Boston: Butterworth-Heinemann.

    Google Scholar 

  • Onken U, Behr A (1996). Chemische Prozeßkunde, 1. Auflage Stuttgart: Georg Thieme Verlag.

    Google Scholar 

  • Perry RH, et al. (1997). Perry’s chemical engineers’ handbook, 7th edn. New York: McGraw-Hill.

    Google Scholar 

  • Peters U, et al. (2003). Methyl Tert-Butyl Ether. In Ullmann’s Enyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.

    Google Scholar 

  • Pöpken T, et al. (2000). Reaction kinetics and chemical equilibrium of homogeneously and heterogeneously catalyzed acetic acid esterification with methanol and methyl acetate hydrolysis. Industrial & Engineering Chemistry Research 39, 2601–2611.

    Article  Google Scholar 

  • Pöpken T (2001). Reaktive Rektifikation unter besonderer Berücksichtigung der Reaktionskinetik am Beispiel von Veresterungsreaktionen. Dr. rer. nat. Dissertation, Fachbereich Chemie, Carl von Ossietzky Universität, Oldenburg.

    Google Scholar 

  • Qi ZS, et al. (2002). Reactive separation of isobutene from C4 crack fractions by catalytic distillation processes. Separation and Purification Technology 26, 147–163.

    Article  CAS  Google Scholar 

  • Rautenbach R (1997). Membranverfahren. Berlin: Springer.

    Google Scholar 

  • Rehfinger A, Hoffmann U (1990a). Kinetics of methyl tertiary butyl ether liquid phase synthesis catalyzed by ion exchange resin — I. Intrinsic rate expression in liquid phase activities. Chemical Engeneering Science 45, 1605–1617.

    Article  CAS  Google Scholar 

  • Rehfinger A, Hoffmann U (1990b). Kinetics of methyl tertiary butyl ether liquid phase synthesis catalyzed by ion exchange resin — II. Macropore diffusion of methanol as rate-controlling step. Chemical Engeneering Science 45, 1619–1626.

    Article  CAS  Google Scholar 

  • Renon H, Prausnitz JM (1968). Local compositions in thermodynamic excess functions for liquid mixtures. AIChE Journal 14, 135–144.

    Article  CAS  Google Scholar 

  • Rohm, Haas (2005). Product Information Ion Exchanger Resins.

    Google Scholar 

  • Samant KD, Ng KM (1998a). Synthesis of extractive reaction processes. AIChE Journal 44, 1363–1381.

    Article  CAS  Google Scholar 

  • Samant KD, Ng KM (1998b). Design of multistage extractive reaction processes. AIChE Journal 44, 2689–2702.

    Article  CAS  Google Scholar 

  • Sand G, et al. (2004a). Structuring of reactive distillation columns for non-ideal mixtures using MINLP-techniques. In ESCAPE, European Symposium on Computer Aided Process Engineering, 493–498. Edited by Barbosa-Povoa A, Matos H. Lisbon, Portugal: Elsevier.

    Google Scholar 

  • Sand G, et al. (2004b). Robust and efficient MINLP optimization of reactive distillation columns. In FOCAPD, Conference on Foundations of Computer-Aided Process Design, 319–322. Edited by Floudas CA, Agrawal R. Princeton/New Jersey.

    Google Scholar 

  • Sand G, et al. (2005a). MINLP-Optimization in the integration of reaction and separation processes. In Sustainable (Bio)Chemical Process Technology, 317–324. Edited by Jansens P, et al. Delft: BHR Group.

    Google Scholar 

  • Sand G, et al. (2005b). Global optimization in the conceptual design of reactive distillation columns. In WCCE, World Congress of Chemical Engineering, pp. C3–004. Glasgow: http://chemengcongress.somcom.co.uk.

  • SBB (2003). ARKI Consulting and Development. http://www.gams.com.

  • Schembecker G (1998a). Heuristisch-Numerische Prozeßsynthese unter Berücksichtigung der Energieintegration. Habilitation, Fachbereich Chemietechnik, Universität Dortmund.

    Google Scholar 

  • Schembecker G (1998b). State-of-the-art and future development of computer-aided process synthesis. Weinheim: DECHEMA Monographien Wiley-VCH Verlag GmbH.

    Google Scholar 

  • Schembecker G, Tlatlik S (2003). Process synthesis for reactive separations. Chemical Engineering and Processing 42, 179–189.

    Article  CAS  Google Scholar 

  • Schenck FW (2003). Glucose and glucose-containing syrup. In Ullmann’s Enyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.

    Google Scholar 

  • Schmidt-Traub H (2005). Preparative chromatography of fine chemicals and pharmaceutical agents. Weinheim: Wiley-VCH.

    Google Scholar 

  • Schoenmakers H, Bessling B (2003). Reactive and catalytic distillation from an industrial perspective. Chemical Engineering and Processing 42, 145–155.

    Article  CAS  Google Scholar 

  • Schubert S, et al. (2001). Enhancement of carbon dioxide absorption into aqueous methyldiethanolamine using immobilised activators. Chemical Engineering Science 56, 6211–6216.

    Article  CAS  Google Scholar 

  • Seader JD, Henley EJ (1998). Separation process principles. New York: Wiley.

    Google Scholar 

  • Seider WD, et al. (2004). Product and process design principles: Synthesis, analysis, and evaluation, 2nd edn. New York: Wiley.

    Google Scholar 

  • Smith AS (1950). Solutropes. Industrial and Engineering Chemistry 42, 1206–1209.

    Article  CAS  Google Scholar 

  • Song W, et al. (1997). Discovery of a reactive azeotrope. Letters to Nature 388, 561–563.

    Article  CAS  Google Scholar 

  • Sørensen JM, Arlt W (1979). Liquid-liquid equilibrium data collection. Frankfurt/Main; Great Neck, N.Y.: DECHEMA; distributed exclusively by Scholium International.

    Google Scholar 

  • Steinigeweg S (2003). Zur Entwicklung von Reaktivrektifikationsprozessen am Beispiel gleichgewichtslimitierender Reaktionen. Dr.-Ing. Dissertation, Fakultät für Mathematik und Naturwissenschaften, Carl von Ossietzky Universität, Oldenburg

    Google Scholar 

  • Stichlmair J (1988). Zerlegung von Dreistoffgemischen durch Rektifikation. Chemie Ingenieur Technik 60, 747–754.

    Article  CAS  Google Scholar 

  • Stichlmair J, Frey T (2001). Mixed-integer nonlinear programming optimization of reactive distillation processes. Industrial and Engineering Chemistry Research 40, 5978–5982.

    Article  CAS  Google Scholar 

  • Tlatlik S (2004). Beitrag zur Prozessynthese integierter Reaktions-und Trennoperationen. Dr.-Ing. Dissertation, Fachbereich Chemietechnik, Universität Dortmund.

    Google Scholar 

  • Tlatlik S, Schembecker G (2005). To integrate or not to integrate? A systematic method to identify benefits of integrated reaction and separation processes. In Sustainable (Bio) Chemical Process Technology in Cooperation with 6th International Conference on Process Identification, 131–147. Delft, NL.

    Google Scholar 

  • Toumi A, Engell S (2004). Optimization-based control of a reactive simulated moving bed process for glucose isomerization. Chemical Engineering Science 59, 3777–3792.

    Article  CAS  Google Scholar 

  • Ung S, Doherty MF (1995a). Synthesis of reactive distillation systems with multiple equilibrium chemical reactions. Industrial and Engineering Chemistry Research 34, 2555–2565.

    Article  CAS  Google Scholar 

  • Ung S, Doherty MF (1995b). Calculation of residue curve maps for mixtures with multiple equilibrium chemical reactions. Industrial and Engineering Chemistry Research 34, 3195–3202.

    Article  CAS  Google Scholar 

  • Ung S, Doherty MF (1995c). Necessary and sufficient conditions for reactive azeotropes in multireaction mixtures. AIChE Journal 41, 2383–2392.

    Article  CAS  Google Scholar 

  • Urschey M (2004). Telomerisation von Butadien mit mehrfunktionellen Nukleophilen. Dr. rer. nat. Dissertation, Fachbereich Bio-und Chemieingenieurwesen, Universität Dortmund.

    Google Scholar 

  • Vriens GN, Medcalf EC (1953). Correlation of ternary liquid-liquid equilibria (An explanation of solutropy). Industrial and Engineering Chemistry 45, 1098–1104.

    Article  CAS  Google Scholar 

  • Vuilleumier S (1996). World outlook for high fructose syrups to the year 2000. International Sugar Journal 98, 467.

    Google Scholar 

  • Wahnschafft OM, et al. (1992). The product composition regions of single-feed azeotropic distillation-columns. Industrial & Engineering Chemistry Research 31, 2345–2362.

    Article  CAS  Google Scholar 

  • Westhaus U (1995). Beitrag zur Auswahl chemischer Reaktoren mittels heuristisch-numerischer Verfahren. Dr.-Ing. Dissertation, Fachbereich Chemietechnik, Universität Dortmund.

    Google Scholar 

  • Widagdo S, Seider WD (1996). Azeotropic distillation. AIChE Journal 42, 96–130.

    Article  CAS  Google Scholar 

  • Wilson GM (1964). Vapor-liquid equilibrium XI. A new expression for the excess free energy of mixing. Journal of the American Chemical Society 86, 127–130.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tylko, M., Barkmann, S., Sand, G., Schembecker, G., Engell, S. (2006). Synthesis of reactive separation processes. In: Integrated Reaction and Separation Operations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30304-9_2

Download citation

Publish with us

Policies and ethics