Skip to main content

The Membrane as a System: How Lipid Structure Affects Membrane Protein Function

  • Chapter
Protein-Lipid Interactions

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 9))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allinger NL, Yuh YH, Lii JH (1989) Molecular mechanics. The MM3 force field for hydrocarbons. J Amer Chem Soc 111:8551–8566

    Google Scholar 

  • Andersson AS, Rilfors L, Bergqvist M, Persson S, Lindblom G (1996) New aspects on membrane lipid regulation in Acholeplasma laidlawii A and phase equilibria of monoacyldiglucosyldiacylglycerol. Biochemistry 35:11119–11130

    Article  Google Scholar 

  • Andree HA, Reutelingsperger CPM, Hauptmann R, Hemker HC, Hermens WT, Willems GM (1990) Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J Biol Chem 265:4923–4928

    Google Scholar 

  • Applegate KR, Glomset JA (1986) Computer-based modelling of the conformation and packing properties of docosahexaenoic acid. J Lipid Res 27:658–680

    Google Scholar 

  • Armen RS, Uitto OD, Feller SE (1998) Phospholipid component volumes: Determination and application to bilayer structure calculations. Biophys J 75:734–744

    Google Scholar 

  • Arnis S, Fahmy K, Hofmann KP, Sakmar TP (1994) A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin. J Biol Chem 269:23879–23881

    Google Scholar 

  • Arondel V, Benning C, Somerville CR (1993) Isolation and functional expression in Escherichia coli of a gene encoding phosphatidylethanolamine methyltransferase (EC 2.1.1.17) from Rhodobacter sphaeroides. J Biol Chem 268:16002–16008

    Google Scholar 

  • Attard GS, Templer RH, Smith WS, Hunt AN, Jackowski S (2000) Modulation of CTP:phosphocholine cytidylyltransferase by membrane curvature elastic stress. Proc Nat Acad Sci USA 97:9032–9036

    Article  ADS  Google Scholar 

  • Bishop DG, Kenrick JR, Bayston JH, MacPherson AS, Johns SR (1980) Monolayer properties of chloroplast lipids. Biochim Biophys Acta 602:248–259

    Google Scholar 

  • Blackwood RA, Ernst JD (1990) Characterization of calcium-dependent phospholipid binding, vesicle aggregation, and membrane fusion by annexins. Biochem J 266:195–200

    Google Scholar 

  • Bloom M, Evans E, Mouritsen OG (1991) Physical properties of the fluid lipid-bilayer component of cell mermbranes: a perspective. Quart Rev Biophys 24:293–397

    Google Scholar 

  • Bogdanov M, Sun J, Kaback HR, Dowhan W (1996) A phospholipid acts as a chaperone in assembly of a membrane transport protein. J Biol Chem 271:11615–11618

    Google Scholar 

  • Bogdanov M, Umeda M, Dowhan W (1999) Phospholipid-assisted refolding of an integral membrane protein — Minimum structural features for phosphatidylethanolamine to act as a molecular chaperone. J Biol Chem 274:12339–12345

    Google Scholar 

  • Boni LT, Hui SW (1983) Polymorphic phase behaviour of dilinoleoylphosphatidylethanolamine and palmitoyloleoylphosphatidylcholine mixtures. Structural changes between hexagonal, cubic and bilayer phases. Biochim Biophys Acta 731:177–185

    Google Scholar 

  • Borle F, Seelig J (1983) Hydration of Escherichia coli lipids. Deuterium T1 relaxation time stuides of phosphatidyglycerol, phosphatidylethanolamine and phosphatidylcholine. Biochim Biophys Acta 735:131–136

    Google Scholar 

  • Botelho AV, Gibson NJ, Thurmond RL, Wand Y, Brown MF (2002) Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids. Biochemistry 41:6354–6368

    Article  Google Scholar 

  • Brown MF (1994) Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids 73:159–180

    Google Scholar 

  • Brown MF (1997) Influence of nonlamellar-forming lipids on rhodopsin. Curr Top Memb 44:285–356

    Google Scholar 

  • Buldt G, Wohlgemuth R (1981) The headgroup conformation of phospholipids in membranes. J Membr Biol 58:81–100

    Google Scholar 

  • Campos B, Mo YD, Mealy TR, Li CW, Swairjo MA, Balch C, Head JF, Retzinger G, Dedman JR, Seaton BA (1998) Mutational and crystallographic analyses of interfacial residues in annexin V suggest direct interactions with phospholipid membrane components. Biochemistry 37:8004–8010

    Article  Google Scholar 

  • Cantor RS (1997) Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem B 101:1723–1725

    Article  Google Scholar 

  • Cevc G, Watts A, Marsh D (1981) Titration of the phase transition of phosphatidylserine bilayer membranes. Effects of pH, surface electrostatics, ion binding, and head-group hydration. Biochemistry 20:4955–4965

    Article  Google Scholar 

  • Cronan JE (2003) Bacterial membrane lipids: Where do we stand? Annu Rev Microbiol 57:203–224

    Article  Google Scholar 

  • Cullis PR, de Kruijff B (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta 559:399–420

    Google Scholar 

  • Damodaran KV, Merz KM (1994) A comparison of DMPC-and DLPE-based lipid bilayers. Biophys J 66:1076–1087

    Google Scholar 

  • de Kruijff B, Cullis PR, Verkleij AJ, Hope MJ, Van Echteld CJA, Taraschi TF, Van Hoogevest P, Killian JA, Rietveld A, Van der Steen ATM (1985) Modulation of lipid polymorphism by lipidprotein interactions. In: Watts A, De Pont JJHHM (eds) Progress in Protein-Lipid Interactions. Elsevier, Amsterdam, pp 89–142

    Google Scholar 

  • de Vries AH, Mark AE, Marrink SJ (2004) The binary mixing behavior of phospholipids in a bialyer: a molecular dynamics study. J Phys Chem B 108:2454–2463

    Google Scholar 

  • Demel RA, Paltauf F, Hauser H (1987) Monolayer characteristics and thermal behavior of natural and synthetic phosphatidylserines. Biochemistry 26:8659–8665

    Article  Google Scholar 

  • Dorfler HD, Miethe P (1990) Phase diagrams of pseudo-binary phospholipid systems. II. Selected calorimetric studies on the influence of branching on the mixing properties of phosphatidylcholines. Chem Phys Lipids 54:61–66

    Google Scholar 

  • East JM, Jones OT, Simmonds AC, Lee AG (1984) Membrane fluidity is not an important physiological regulator of the (Ca2+-Mg2+)-dependent ATPase of sarcoplasmic reticulum. J Biol Chem 259:8070–8071

    Google Scholar 

  • East JM, Melville D, Lee AG (1985) Exchange rates and numbers of annular lipids for the calcium and magnesium ion dependent adenosinetriphosphatase. Biochemistry 24:2615–2623

    Article  Google Scholar 

  • Eldho NV, Feller SE, TristramNagle S, Polozov IV, Gawrisch K (2003) Polyunsaturated docosahexaenoic vs docosapentaenoic acid — differences in lipid matrix properties from the loss of one double bond. J Am Chem Soc 125:6409–6421

    Article  Google Scholar 

  • Elmore DE, Dougherty DA (2001) Molecular dynamics simulations of wild-type and mutant forms of the Mycobacterium tuberculosis MscL channel. Biophys J 81:1345–1359

    Google Scholar 

  • Elmore DE, Dougherty DA (2003) Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. Biophys J 85:1512–1524

    Google Scholar 

  • Evans E, Hochmuth RM (1978) Mechanical properties of membranes. Curr Top Membr Transp 10:1–64

    Google Scholar 

  • Evans E, Needham D (1987) Physical properties of surfactant bilayer membranes; thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions. J Phys Chem 91:4219–4228

    Google Scholar 

  • Fattal DR, Ben-Shaul A (1993) A molecular model for lipid-protein interaction in membranes: the role of hydrophobic mismatch. Biophys J 65:1795–1809

    Google Scholar 

  • Feller SE, Gawrisch K, MacKerell AD (2002) Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J Am Chem Soc 124:318–326

    Article  Google Scholar 

  • Feller SE, Gawrisch K, Woolf TB (2003) Rhodopsin exhibits a preference for solvation by polyunsaturated docosohexaenoic acid. J Amer Chem Soc 125:4434–4435

    Article  Google Scholar 

  • Fenske DB, Jarrell HC, Guo Y, Hui SW (1990) Effect of unsaturated phosphatidylethanolamine on the chain order profile of bilayers at the onset of the hexagonal phase transition. A 2H NMR study. Biochemistry 29:11222–11229

    Google Scholar 

  • Froud RJ, East JM, Rooney EK, Lee AG (1986) Binding of long-chain alkyl derivatives to lipid bilayers and to (Ca2+-Mg2+)-ATPase. Biochemistry 25:7535–7544

    Google Scholar 

  • Galdiero S, Gouaux E (2004) High resolution crystallographic studies of alpha-hemolysinphospholipid complexes define heptamer-lipid head group interactions: Implication for understanding protein-lipid interactions. Protein Sci 13:1503–1511

    Article  Google Scholar 

  • Goldfine H (1984) Bacterial membranes and lipid packing theory. J Lipid Res 25:1501–1507

    Google Scholar 

  • Gruner SM (1985) Intrinsic curvature hypothesis for biomembrane lipid composition: A role for nonbilayer lipids. Proc Natl Acad Sci 82:3665–3669

    ADS  Google Scholar 

  • Gullingsrud J, Schulten K (2004) Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophysical J 86:3496–3509

    ADS  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    Google Scholar 

  • Hankamer B, Barber J, Boekema EJ (1997) Structure and membrane organization of photosystem II in green plants. Annu Rev Plant Physiol 48:641–671

    Google Scholar 

  • Harlos K, Eibl H, Pascher I, Sundell S (1984) Conformation and packing properties of phosphatidic acid: the crystal structure of monosodium dimyristoylphosphatidate. Chem Phys Lipids 34:115–126

    Google Scholar 

  • Harroun TA, Heller WT, Weiss TM, Yang L, Huang HW (1999) Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys J 76:937–945

    Google Scholar 

  • Harwood JL, Russell NJ (1984) Lipids in plants and microbes, George Allen & Unwin, London

    Google Scholar 

  • Heller H, Schaefer M, Schulten K (1993) Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid-crystal phases. J Phys Chem 97:8343–8360

    Article  Google Scholar 

  • Holte LL, Peter SA, Sinnwell TM, Gawrisch K (1995) 2H nuclear magnetic resonance order parameter profiles suggest a change of molecular shape for phosphatidylcholines containing a polyunsaturated acyl chain. Biophys J 68:2396–2403

    Google Scholar 

  • Hsieh CH, Wu WG (1997) Structure and dynamics of primary hydration shell of phosphatidylcholine bilayers at subzero temperatures. Biophys J 71:3278–3287

    Google Scholar 

  • Huang P, Perez JJ, Loew GH (1994) Molecular dynamics simulations of phospholipid bilayers. J Biomolec Struct Dynamics 5:927–956

    Google Scholar 

  • Hyvonen MT, Rantala TT, Ala-Korpela M (1997) Structure and dynamic properties of diunsaturated 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine lipid bilayer from molecular dynamics simulation. Biophys J 73:2907–2923

    Google Scholar 

  • Jang H, Crozier PS, Stevens MJ, Woolf TB (2004) How environment supports a state: molecular dynamics simulations of two states in bacteriorhodopsin suggest lipid and water compensation. Biophys J 87:129–145

    Article  Google Scholar 

  • Johnston DS, Chapman D (1988) A calorimetric study of the thermotropic behaviour of mixtures of brain cerebrosides with other brain lipids. Biochim Biophys Acta 939:603–614

    Google Scholar 

  • Knoll W, Ibel K, Sackmann E (1981) Small-angle neutron diffraction scattering studies of lipid phase diagrams by the contrast variation method. Biochemistry 20:6379–6383

    Article  Google Scholar 

  • Knoll W, Schmidt G, Sackmann E (1983) Critical demixing in fluid bilayers of phospholipid mixtures: a neutron diffraction study. J Chem Phys 79:3439–3442

    Article  ADS  Google Scholar 

  • Kuhlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621

    ADS  Google Scholar 

  • Lafleur M, Cullis PR, Bloom M (1990) Modulation of the orientational order profile of the lipid acyl chain in the Lα phase. Eur Biophys J 19:55–62

    Article  Google Scholar 

  • Laroche G, Dufourc EJ, Pezolet M, Dufourcq J (1990) Coupled changes between lipid order and polypeptide conformation at the membrane surface. A 2H NMR and Raman study of polylysine-phosphatidic acid systems. Biochemistry 29:6460–6465

    Article  Google Scholar 

  • Lee AG (1977) Lipid phase transitions and phase diagrams. II. Mixtures involving lipids. Biochim Biophys Acta 472:285–344

    Google Scholar 

  • Lee AG (2003) Lipid-protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612:1–40

    Google Scholar 

  • Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666:62–87

    Google Scholar 

  • Lewis BA, Engelman DM (1983) Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol 166:211–217

    Google Scholar 

  • Li S, Lin HN, Wang ZQ, Huang C (1994) Identification and characterization of kink motifs in 1-palmitoyl-2-oleoyl-phosphatidylcholines: a molecular mechanics study. Biophys J 66:2005–2018

    ADS  Google Scholar 

  • Lindahl E, Edholm O (2000) Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations. J Chem Phys 113:3882–3893

    Article  ADS  Google Scholar 

  • Lindblom G, Brentel I, Sjolund M, Wikander G, Wieslander A (1986) Phase equilibria of membrane lipids from Acholeplasma laidlawii: Importance of a single lipid forming nonlamellar phases. Biochemistry 25:7502–7510

    Article  Google Scholar 

  • Lindblom G, Hauksson JB, Rilfors L, Bergenstahl B, Wieslander A, Eriksson PO (1993) Membrane lipid regulation in Acholeplasma laidlawii grown with saturated fatty acids. J Biol Chem 268:16198–16207

    Google Scholar 

  • Litman BJ, Mitchell DC (1996) Rhodopsin structure and function. In: Lee AG (ed) Biomembranes. Volume 2A. Rhodopsin and G-protein linked receptors. JAI Press, Greenwich, Connecticut, pp 1–32

    Google Scholar 

  • Lohner K (1996) Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem Phys Lipids 81:167–184

    Google Scholar 

  • Lopez Cascales JJ, Garcia de la Torre J, Marrink SJ, Berendsen HJC (1996) Molecular dynamics simulation of a charged biological membrane. J Chem Phys 104:2713–2720

    ADS  Google Scholar 

  • Lundbaek JA, Andersen OS (1999) Spring constants for channel-induced lipid bilayer deformations estimates using gramicidin channels. Biophys J 76:889–895

    Google Scholar 

  • Lundbaek JA, Birn P, Hansen AJ, Sogaard R, Nielsen C, Girshman J, Bruno MJ, Tape SE, Egebjerg J, Greathouse DV, Mattice GL, Koeppe RE, Andersen OS (2004) Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of micelle-forming amphiphiles and cholesterol. J Gen Physiol 123:599–621

    Article  Google Scholar 

  • Marrink SJ, Berendsen HJC (1994) Simulation of water transport through a lipid membrane. J Phys Chem 98:4155–4168

    Article  Google Scholar 

  • Marsh D (1996) Lateral pressure in membranes. Biochim Biophys Acta 1286:183–223

    Google Scholar 

  • Marsh D, Pali T (2004) The protein-lipid interface: perspectives from magnetic resonance and crystal structures. Biochim Biophys Acta 1666:118–141

    Google Scholar 

  • McCabe MA, Griffith GL, Ehringer WD, Stillwell W, Wassall SR (1994) 2H NMR studies of isomeric ω3 and ω6 polyunsaturated phospholipid membranes. Biochemistry 33:7203–7210

    Article  Google Scholar 

  • McDonnel A, Staehelin LA (1980) Adhesion between liposomes mediated by the chlorophyll a/b light-harvesting complex isolated from chloroplast membranes. J Cell Biol 84:40–56

    Article  Google Scholar 

  • McIntosh TJ, Simon SA (1986) Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers. Biochemistry 25:4948–4952

    Google Scholar 

  • Mouritsen OG, Bloom M (1984) Mattress model of lipid-protein interactions in membranes. Biophys J 46:141–153

    Google Scholar 

  • Murzyn K, Rog T, Jezierski G, Takaoka Y, Pasenkiewicz-Gierula M (2001) Effects of phospholipid unsaturation on the membrane/water interface: A molecular simulation study. Biophys J 81:170–183

    Google Scholar 

  • Nagle JF, Wiener MC (1988) Structure of fully hydrated bilayer dispersions. Biochim Biophys Acta 942:1–10

    Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195

    Google Scholar 

  • Nielsen C, Andersen OS (2000) Inclusion-induced bilayer deformations: Effects of monolayer equilibrium curvature. Biophys J 79:2583–2604

    Google Scholar 

  • Nielsen C, Goulian M, Andersen OS (1998) Energetics of inclusion-induced bilayer deformations. Biophys J 74:1966–1983

    Google Scholar 

  • Nogi T, Fathir I, Kobayashi M, Nozawa T, Miki K (2000) Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: Thermostability and electron transfer. Proc Nat Acad Sci 97:13561–13566

    ADS  Google Scholar 

  • O’Keeffe AH, East JM, Lee AG (2000) Selectivity in lipid binding to the bacterial outer membrane protein OmpF. Biophys J 79:2066–2074

    Google Scholar 

  • Olson R, Nariya H, Yokota K, Kamio Y, Gouaux E (1999) Crystal structure of Staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nature Struct Biology 6:134–140

    Google Scholar 

  • Paltauf F (1994) Ether lipids in biomembranes. Chem Phys Lipids 74:101–139

    Google Scholar 

  • Pascher I, Lundmark M, Nyholm PG, Sundell J (1992) Crystal structures of membrane lipids. Biochim Biophys Acta 1113:339–373

    Google Scholar 

  • Pasenkiewicz-Gierula M, Takaoka Y, Miyagawa H, Kitamura K, Kusumi A (1999) Charge pairing of headgroups in phosphatidylcholine membranes: A molecular dynamics simulation study. Biophys J 76:1228–1240

    Google Scholar 

  • Pearson RH, Pascher I (1979) The molecular structure of lecithin dihydrate. Nature 281:499–501

    ADS  Google Scholar 

  • Periole X, Ceruso MA, Mehler EL (2004) Acid-base equilibria in rhodopsin: Dependence of the protonation state of Glu134 on its environment. Biochemistry 43:6858–6864

    Article  Google Scholar 

  • Perly B, Smith ICP, Jarrell HC (1985) Effects of the replacement of a double bond by a cyclopropane ring in phosphatidylethanolamines: a deuterium NMR study of phase transitions and molecular organization. Biochemistry 24:1055–1063

    Google Scholar 

  • Petrache HI, Feller SE, Nagle JF (1997) Determination of component volumes of lipid bilayers from simulations. Biophys J 70:2237–2242

    Google Scholar 

  • Petrache HI, Tristram-Nagle S, Gawrisch K, Harries D, Parsegian VA, Nagle JF (2004) Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt. Biophysical J 86:1574–1586

    ADS  Google Scholar 

  • Poastor RW, Venable RM, Karplus M, Szabo A (1988) A simulation based model of NMR T1 relaxation in lipid bilayer vesicles. J Chem Phys 89:1128–1140

    ADS  Google Scholar 

  • Pott T, Maillet JC, Dufourc EJ (1995) Effects of pH and cholesterol on DMPA membranes: a solid state 2H-and 31P-NMR study. Biophys J 69:1897–1908

    Google Scholar 

  • Powl AM, East JM, Lee AG (2003) Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL. Biochemistry 42:14306–14317

    Article  Google Scholar 

  • Powl AM, East JM, Lee AG (2005) Heterogeneity in the binding of lipid molecules to the surface of a membrane protein: hot spots on the surface of the mechanosensitive channel of large conductance MscL. Biochemistry 44:5873–5883

    Google Scholar 

  • Rand RP, Fuller N, Parsegian VA, Rau DC (1988) Variation in hydration forces between neutral phospholipid bilayers: evidence for hydration attraction. Biochemistry 27:7711–7722

    Article  Google Scholar 

  • Raynal P, Pollard HB (1994) Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium-and phospholipid-binding proteins. Biochim Biophys Acta 1197:63–93

    Google Scholar 

  • Rich MR (1993) Conformational analysis of arachidonic and related fatty acids using molecular dynamics simulations. Biochim Biophys Acta 1178:87–96

    Google Scholar 

  • Rietveld AG, Killian JA, Dowham W, de Kruijff B (1993) Polymorphic regulation of membrane phospholipid composition in Escherichia coli. J Biol Chem 268:12427–12433

    Google Scholar 

  • Rilfors L, Wieslander A, Lindblom G, Christiansson A (1984) Lipid bilayer stability in biological membranes In: Kates M, Manson LA (eds) Membrane fluidity. Biomembranes Vol. 12. Plenum Press, New York, pp 205–245

    Google Scholar 

  • Sachs F, Morris CE (1998) Mechanosensitive ion channels in nonspecialized cells. Rev Physiol Biochem Pharmacol 132:1–78

    Google Scholar 

  • Sackmann E (1995) Physical basis of self-organization and function of membranes: physics of vesicles In: Lipowsky R, Sackmann E (eds) Handbook of Biological Physics. Vol. 1. Structure and Dynamics of Membranes. Elsevier, Amsterdam, pp 213–304

    Google Scholar 

  • Sanson A, Monck MA, Neumann JM (1995) 2D 1H-NMR conformational study of phosphatidylserine diluted in perdeuterated dodecylphosphocholine micelles. Evidence for a pH-induced conformational transition. Biochemistry 34:5938–5944

    Article  Google Scholar 

  • Scherer PG, Seelig J (1987) Structure and dynamics of the phosphatidylcholine and the phosphatidylethanolamine head group in L-M fibroblasts as studied by deuterium nuclear magnetic resonance. EMBO J 6:2915–2922

    Google Scholar 

  • Schlaepfer DD, Mehlman T, Burgess WH, Haigler HT (1987) Structural and functional characterization of endonexin II, a calcium-and phospholipid-binding protein. Proc Natl Acad Sci USA 84:6078–6082

    ADS  Google Scholar 

  • Seddon JM (1990) Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta 1031:1–69

    Google Scholar 

  • Seelig A, Seelig J (1975) Bilayers of dipalmitoyl-3-sn-phosphatidylcholine: Conformational differences between the fatty acyl chains. Biochim Biophys Acta 406:1–5

    Google Scholar 

  • Seelig J, Seelig A (1980) Lipid conformation in model membranes. Quart Rev Biophys 13:19–61

    Google Scholar 

  • Seelig J, Macdonald PM, Scherer PG (1987) Phospholipid head groups as sensors of electric charge in membranes. Biochemistry 26:7535–7541

    Article  Google Scholar 

  • Sen A, Williams WP, Quinn PJ (1981) The structure and thermotropic properties of pure 1,2-diacylgalacosylglycerols in aqueous systems. Biochim Biophys Acta 663:380–389

    Google Scholar 

  • Shimshick EJ, McConnell HM (1973) Lateral phase separation in phospholipid membranes. Biochemistry 12:2351–2360

    Article  Google Scholar 

  • Shipley GG, Green JP, Nichols BN (1973) The phase behaviour of monogalactosyl, digalactosyl, and sulphoquinosyl diglycerides. Biochim Biophys Acta 311:531–544

    Google Scholar 

  • Simidjiev I, Barzda V, Mustardy L, Garab G (1998) Role of thylakoid lipids in the structural flexibility of lamellar aggregates of the isolated light-harvesting chlorophyll a/b complex of photosystem II. Biochemistry 37:4169–4173

    Article  Google Scholar 

  • Simidjiev I, Stoylova S, Amenitsch H, Javorfi T, Mustardy L, Laggner P, Holzenburg A, Garab G (2000) Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc Natl Acad Sci 97:1473–1476

    Article  ADS  Google Scholar 

  • Small DM (1986) The physical chemistry of lipids. Handbook of lipid research, Vol. 4. Plenum Press, New York

    Google Scholar 

  • Sohlenkamp C, Lopez-Lara IM, Geiger O (2003) Biosynthesis of phosphtaidylcholine in bacteria. Prog Lipid Res 42:115–162

    Google Scholar 

  • Sperotto MM, Mouritsen OG (1988) Dependence of lipid membrane phase transition temperature on the mismatch of protein and lipid hydrophobic thickness. Eur Biophys J 16:1–10

    Article  Google Scholar 

  • Stouch TR, Alper HE, Bassolino-Klimas D (1994) Supercomputing studies of biomembranes. Supercomputer Appl High Perf Computing 8:6–23

    Google Scholar 

  • Swairjo MA, Concha NO, Kaetzel MA, Dedman JR, Seaton BA (1995) Ca2+-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nature Struct Biology 2:968–974

    Google Scholar 

  • Volke F, Eisenblatter S, Galle J, Klose G (1994) Dynamic properties of water at phosphatidylcholine lipid bilayer surfaces as seen by deuterium and pulsed field gradient proton NMR. Chem Phys Lipids 70:121–131

    Google Scholar 

  • Warren GB, Toon PA, Birdsall NJM, Lee AG, Metcalfe JC (1974) Reconstitution of a calcium pump using defined membrane constituents. Proc Natl Acad Sci 71:622–626

    ADS  Google Scholar 

  • Watanabe M, Tomita T, Yasuda T (1987) Membrane-damaging action of staphylococcal α-toxin on phospholipid-cholesterol liposomes. Biochim Biophys Acta 898:257–265

    Google Scholar 

  • White SH, Ladokhin AS, Jayasinghe S, Hristova K (2001) How membranes shape protein structure. J Biol Chem 276:32395–32398

    Google Scholar 

  • White SH, Wiener MC (1995) Determination of the structure of fluid lipid bilayer membranes. In: Disalvo EA, Simon SA (eds) Permeability and stability of lipid bilayers. CRC Press, Boca Raton, pp 1–19

    Google Scholar 

  • Wiener MC, King GI, White SH (1991) Structure of a fluid dioleoylphosphatidylcholne bilayer determined by joint refinement of X-ray and neutron diffraction data. I. Scaling of neutron data and the distribution of double bonds and water. Biophys J 60:568–576

    Google Scholar 

  • Wiener MC, White SH (1992) Structure of a fluid dioleoylphosphatidylcholne bilayer determined by joint refinement of X-ray and neutron diffraction data. III. Complete structure. Biophys J 61:434–447

    Google Scholar 

  • Wikstrom M, Xie J, Bogdanov M, Mileykovskaya E, Heacock P, Wieslander A, Dowhan W (2004) Monoglucosyldiacylglycerol, a foreign lipid, can substitute for phosphatidylethanolamine in essential membrane-associated functions in Escherichia coli. J Biol Chem 279:10484–10493

    Google Scholar 

  • Williamson IM, Alvis SJ, East JM, Lee AG (2002) Interactions of phospholipids with the potassium channel KcsA. Biophys J 83:2026–2038

    Google Scholar 

  • Yeagle PL (1978) Phospholipid headgroup behavior in biological assemblies. Acc Chem Res 11:321–327

    Article  Google Scholar 

  • Zaccai G, Buldt G, Seelig A, Seelig J (1979) Neutron diffraction studies on phosphatidylcholine model membranes. J Mol Biol 134:693–706

    Article  Google Scholar 

  • Zhou F, Schulten K (1995) Molecular dynamics study of a membrane-water interface. J Phys Chem 99:2194–2207

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, A.G. (2006). The Membrane as a System: How Lipid Structure Affects Membrane Protein Function. In: Mateo, C.R., Gómez, J., Villalaín, J., González-Ros, J.M. (eds) Protein-Lipid Interactions. Springer Series in Biophysics, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28435-4_6

Download citation

Publish with us

Policies and ethics