Skip to main content

Geometric Approach to Multilayer Perceptrons

  • Chapter
Book cover Handbook of Geometric Computing

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike H. (1974) A new look at the statistical model identification. IEEE Trans., AC-19:716–723.

    MathSciNet  Google Scholar 

  2. Amari S. (1985) Differential-Geometrical Method in Statistics. Springer, Berlin Heidelberg New York

    Google Scholar 

  3. Amari S. (1998) Natural gradient works efficiently in learning. Neural Computation 10:251–276

    Article  Google Scholar 

  4. Amari S., Kurata K. and Nagaoka H. (1992). Information geometry of Boltzmann machines. IEEE Trans. on Neural Networks 3:260–271

    Article  Google Scholar 

  5. Amari S., Nagaoka H. (2000) Methods of Information Geometry. AMS and Oxford University press, New York

    MATH  Google Scholar 

  6. Amari S., Ozeki, T. (2001) Differential and algebraic geometry of multilayer perceptrons. IEICE Trans. Fundamentals E84-A:31–38

    Google Scholar 

  7. Amari S., Park H., Fukumizu K. (2000) Adaptive method of realizing natural gradient learning for multilayer perceptrons. Neural Computation 12:1399–1409

    Article  Google Scholar 

  8. Amari S., Park H., Ozeki, T. (2000) Statistical inference in non-identifiable and singular statistical models. Journal of Korean Statistical Society 30:179–192

    MathSciNet  Google Scholar 

  9. Amari S., Park H., Ozeki, T. (2003) Geometrical singularities in the neuromanifold of multilayer perceptrons. Advances in NIPS 14:343–350

    Google Scholar 

  10. Bishop, C. (1995) Neural Networks for Pattern Recognition Oxford University Press, Oxford

    Google Scholar 

  11. Brockett, R.W. (1976) Some geometric questions in the theory of linear systems. IEEE Trans. on Automatic Control 21:449–455

    Article  MATH  MathSciNet  Google Scholar 

  12. Bottou, L. (1998) Online Algorithms and Stochastic Approximations. In Saad D. ed., Online Learning and Neural Networks. Cambridge University Press, Cambridge, UK

    Google Scholar 

  13. Chen A.M., Lu H., Hecht-Nielsen R. (1993) On the geometry of feedforward neural network error surfaces. Neural Computations 5:910–927

    Google Scholar 

  14. Cover, T.M., Thomas, J.A. (1991) Elements of Information Theory Wiley, New York

    MATH  Google Scholar 

  15. Dacunha-Castelle, D., Gassiat, é. (1997) Testing in locally conic models, and application to mixture models. Probability and Statistics 1:285–317

    MathSciNet  MATH  Google Scholar 

  16. Fukumizu, K. (2003) Likelihood ratio of unidentifiable models and multilayer neural networks. The Annals of Statistics 31:833–851

    Article  MATH  MathSciNet  Google Scholar 

  17. Fukumizu, K., Amari, S. (2000) Local minima and plateaus in hierarchical structures of multilayer perceptrons. Neural Networks 13:317–327

    Article  Google Scholar 

  18. Hagiwara, K. (2002) On the problem in model selection of neural network regression in overrealizable scenario. Neural Computation 14:1979–2002

    Article  MATH  Google Scholar 

  19. Hartigan, J. A. (1985) A failure of likelihood asymptotics for normal mixtures. Proc. Berkeley Conf. in Honor of J. Neyman and J. Kiefer 2:807–810

    Google Scholar 

  20. Hironaka, H. (1964) Resolution of singularities of an algebraic variety over a field of characteristic zero. Annals of Mathematics 79:109–326

    Article  MATH  MathSciNet  Google Scholar 

  21. Hotelling, H. (1939) Tubes and spheres in n-spaces, and a class of statistical problems. Amer. J. Math. 61:440–460

    MATH  MathSciNet  Google Scholar 

  22. Kurkova V., Kainen P.C. (1994) Functionally equivalent feedforward neural networks. Neural Computation 6:543–558

    Article  Google Scholar 

  23. Kuriki S., Takemura, A. (2001) Tail probabilities of the maxima of multilinear forms and their applications. The Annals of Statistics 29:328–371

    Article  MathSciNet  MATH  Google Scholar 

  24. Park H., Amari S., Fukumizu K. (2000) Adaptive natural gradient learning algorithms for various stochastic models. Neural Networks 13:755–764

    Article  Google Scholar 

  25. Rattray M., Saad D., Amari S. (1998) Natural gradient descent for on-line learning. Physical Review Letters 81:5461–5464

    Article  Google Scholar 

  26. Rissanen J. (1978) Modelling by shortest data description, Automatica 14:465–471

    Article  MATH  Google Scholar 

  27. Rüger S.M., Ossen A. (1997) The metric of weight space. Neural Processing Letters 5:63–72

    Article  Google Scholar 

  28. Rumelhart D.E., McClelland J.L. (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1. MIT Press, Cambridge, MA

    Google Scholar 

  29. Saad, D. and Solla, A. (1995) On-line learning in soft committee machines. Physical Review E 52:4225–4243

    Article  Google Scholar 

  30. Sussmann H.J. (1992) Uniqueness of the weights for minimal feedforward nets with a given input-output map. Neural Networks 5:589–593

    Article  Google Scholar 

  31. Watanabe, S. (2001) Algebraic analysis for non-identifiable learning machines. Neural Computation 13:899–933

    Article  MATH  Google Scholar 

  32. Weyl, H. (1939) On the volume of tubes. Amer. J. Math. 61:461–472

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Park, H., Ozeki, T., Amari, Si. (2005). Geometric Approach to Multilayer Perceptrons. In: Handbook of Geometric Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28247-5_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-28247-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20595-1

  • Online ISBN: 978-3-540-28247-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics