Skip to main content

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 3087 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • R. A. Adams (1975), Sobolev Spaces, Academic Press, New York.

    Google Scholar 

  • A. Adini and R. Clough (1961), Analysis of plate bending by the finite element method, NSF Report G. 7337, University of California, Berkeley, CA.

    Google Scholar 

  • S. Adjerid, J. E. Flaherty, and Y. J. Wang (1993), A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems, Numer. Math. 65, 1–21.

    Article  Google Scholar 

  • M. Ainsworth and J. T. Oden (2000), A-posteriori Error Analysis in Finite Element Analysis, Wiley Inter-Science, New York.

    Google Scholar 

  • M. G. Ancona and G. J. Iafrate (1989), Quantum correction to the equation of state of an electron gas in a semiconductor, Phys. Rev. B 39, 9536–9540.

    Article  Google Scholar 

  • S. N. Antontsev (1972), On the solvability of boundary value problems for degenerate two-phase porous flow equations, Dinamika Splo\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{s} \)noĭ?? Sredy Vyp. 10, 28–53, in Russian.

    Google Scholar 

  • T. Arbogast and Z. Chen (1995), On the implementation of mixed methods as nonconforming methods for second order elliptic problems, Math. Comp. 64, 943–972.

    Google Scholar 

  • T. Arbogast and M. F. Wheeler (1995), A characteristics-mixed finite element for advection-dominated transport problems, SIAM J. Numer. Anal. 32, 404–424.

    Article  Google Scholar 

  • D. N. Arnold (1982), An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19, 742–760.

    Article  Google Scholar 

  • D. N. Arnold and F. Brezzi (1985), Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modèl. Math. Anal. Numér. 19, 7–32.

    Google Scholar 

  • D. N. Arnold, F. Brezzi, and J. Douglas, Jr. (1984A), PEERS: A new mixed finite element for plane elasticity, Japan J. Appl. Math. 1, 347–367.

    Google Scholar 

  • D. N. Arnold, F. Brezzi, and M. Fortin (1984B), A stable finite element for the Stokes equations, Calcolo 21, 337–344.

    Google Scholar 

  • D. N. Arnold, L. R. Scott, and M. Vogelius (1988), Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon, Ann. Scuola Norm. Sup. Pisa Cl. Sci.-Serie IV XV, 169–192.

    Google Scholar 

  • K. Arrow, L. Hurwicz, and H. Uzawa (1958), Studies in Nonlinear Programming, Stanford University Press, Stanford, CA.

    Google Scholar 

  • J. P. Aubin (1967), Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods, Ann. Scuola Norm. Sup. Pisa 21, 599–637.

    Google Scholar 

  • O. Axelsson (1994), Iterative Solution Methods, Cambridge University Press, Cambridge.

    Google Scholar 

  • K. Aziz and A. Settari (1979), Petroleum Reservoir Simulation, Applied Science Publishers Ltd, London.

    Google Scholar 

  • I. Babuška and M. R. Dorr (1981), Error estimates for the combined h and p versions of the finite element method, Numer. Math. 37, 257–277.

    Article  Google Scholar 

  • I. Babuška, J. Osborn, and J. Pitkäranta (1980), Analysis of mixed methods using mesh dependent norms, Math. Comp. 35, 1039–1062.

    Google Scholar 

  • I. Babuška and W. C. Rheinboldt (1978A), Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15, 736–754.

    Article  Google Scholar 

  • I. Babuška and W. C. Rheinboldt (1978B), A-posteriori error estimates for the finite element method, Int. J. Num. Meth. Eng. 12, 1597–1615.

    Article  Google Scholar 

  • I. Babuška, A. Miller, and M. Vogelius (1983), Adaptive methods and error estimation for elliptic problems of structural mechanics, in Adaptive Computational Methods for Partial Differential Equations, I. Babuška, et al., eds., SIAM, PA, 35–56.

    Google Scholar 

  • W. Bangerth and R. Rannacher (2003), Adaptive Finite Element Methods for Differential Equations, Birkhäuser, Basel.

    Google Scholar 

  • G. A. Baker (1977), Finite element methods for elliptic equations using nonconforming elements, Math. Comp. 31, 45–59.

    Google Scholar 

  • R. E. Bank (1990), PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, User's Guide 6.0, SIAM, PA.

    Google Scholar 

  • R. E. Bank, A. H. Sherman, and A. Weiser (1983), Refinement algorithms and data structures for regular local mesh refinement, in Scientific Computing, R. Stepleman, et al., eds., North-Holland, Amsterdam, New York, Oxford, 3–17.

    Google Scholar 

  • R. E. Bank and K. Smith (1993), A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal. 30, 921–935.

    Article  Google Scholar 

  • R. E. Bank and A. Weiser (1985), Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44, 283–301.

    Google Scholar 

  • J. W. Barrett and K. W. Morton (1984), Approximate symmetrization and Petrov-Galerkin methods for diffusion-convection problems, Comp. Mech. Appl. Mech. Engrg. 45, 97–122.

    Article  Google Scholar 

  • G. Bazeley, Y. Cheung, B. Irons, and O. Zienkiewicz (1965), Triangular elements in bending conforming and nonconforming solutions, Proceedings of the Conference on Matrix Methods in Structural Mechanics, Wright Patterson A.F.B., Ohio.

    Google Scholar 

  • J. Bear (1972), Dynamics of Fluids in Porous Media, Dover, New York.

    Google Scholar 

  • M. J. Berger and J. Oliger (1984), Adaptive mesh refinement for hyperbolic partial differential equations, J. Comp. Phys. 53, 484–512.

    Article  Google Scholar 

  • C. Bernardi, B. Métivet, and R. Verfürth (1993), Analyse numérique d'indicateurs d'erreur, Report 93025, Université Pierre et Marie Curie, Paris VI.

    Google Scholar 

  • M. Bieterman and I. Babuška (1982), The finite element method for parabolic equations, a posteriori error estimation, Numer. Math. 40, 339–371.

    Article  Google Scholar 

  • F. J. Blatt (1968), Physics of Electric Conduction in Solids, McGraw Hill, New York.

    Google Scholar 

  • K. Blotekjaer (1970), Transport equations for electrons in two-valley semiconductor, IEEE Trans. Electron Devices ED 17, 38–47.

    Google Scholar 

  • D. Braess (1997), Finite Elements, Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge University Press, Cambridge.

    Google Scholar 

  • J. H. Bramble (1966), A second-order finite difference analog of the first biharmonic boundary value problem, Numer. Math. 4, 236–249.

    Article  Google Scholar 

  • J. H. Bramble (1993), Multigrid Methods, Pitman Research Notes in Math., vol. 294, Longman, London.

    Google Scholar 

  • J. H. Bramble and S. R. Hilbert (1970), Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, SIAM J. Numer. Anal. 7, 113–124.

    Article  Google Scholar 

  • J. H. Bramble, J. E. Pasciak, and A. Vassilev (1997), Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal. 34, 1072–1092.

    Article  Google Scholar 

  • S. C. Brenner and L. R. Scott (1994), The Mathematical Theory of Finite Element Methods, Springer, New York Berlin Heidelberg.

    Google Scholar 

  • F. Brezzi, J. Douglas, Jr., R. Durán, and M. Fortin (1987A), Mixed finite elements for second order elliptic problems in three variables, Numer. Math. 51, 237–250.

    Article  Google Scholar 

  • F. Brezzi, J. Douglas, Jr., M. Fortin, and L. D. Marini (1987B), Efficient rectangular mixed finite elements in two and three space variables, RAIRO Modèl. Math. Anal. Numér 21, 581–604.

    Google Scholar 

  • F. Brezzi, J. Douglas, Jr., and L. D. Marini (1985), Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47, 217–235.

    Article  Google Scholar 

  • F. Brezzi and M. Fortin (1991), Mixed and Hybrid Finite Element Methods, Springer, New York Berlin Heidelberg.

    Google Scholar 

  • A. Brooks and T. J. Hughes (1982), Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comp. Mech. Appl. Mech. Engrg. 32, 199–259.

    Article  Google Scholar 

  • D. C. Brown (1982), Alternating-direction iterative schemes for mixed finite element methods for second order elliptic problems, Dissertation, University of Chicago, Illinois.

    Google Scholar 

  • P. Castillo, B. Cockburn, D. Schotzau, and C. Schwab (2002), Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin methods for convection-diffusion problems, Math. Comp. 71, 455–478.

    Article  Google Scholar 

  • M. A. Celia, T. F. Russell, I. Herrera, and R. E. Ewing (1990), An Eulerian Lagrangian localized adjoint method for the advection-diffusion equation, Adv. Water Resour. 13, 187–206.

    Article  Google Scholar 

  • G. Chavent and J. Jaffré (1978), Mathematical Models and Finite Elements for Reservoir Simulation, North-Holland, Amsterdam.

    Google Scholar 

  • H. Chen and Z. Chen (2003), Stability and convergence of mixed discontinuous finite element methods for second-order differential problems, J.f Numer. Math. 11, 253–287.

    Article  Google Scholar 

  • H. Chen, Z. Chen, and B. Li (2003A), Numerical study of the hp version of mixed discontinuous finite element methods for reaction-diffusion problems: the 1D case, Numer. Meth. Part. Differ. Equ. 19, 525–553.

    Article  Google Scholar 

  • H. Chen, Z. Chen, and B. Li (2003B), The hp version of mixed discontinuous finite element methods for advection-diffusion problems, Int. J. Math Math. Sci. 53, 3385–3411.

    Article  Google Scholar 

  • Z. Chen (1989), On the existence, uniqueness and convergence of nonlinear mixed finite element methods, Mat. Aplic. Comp. 8, 241–258.

    Google Scholar 

  • Z. Chen (1993A), Analysis of mixed methods using conforming and nonconfirming finite element methods, RAIRO Model. Math. Anal. Numer. 27, 9–34.

    Google Scholar 

  • Z. Chen (1993B), Projection finite element methods for semiconductor device equations, Comput. Math. Appl. 25, 81–88.

    Article  Google Scholar 

  • Z. Chen (1996), Equivalence between and multigrid algorithms for nonconforming and mixed methods for second order elliptic problems, East-West J. Numer. Math. 4, 1–33.

    Google Scholar 

  • Z. Chen (1997), Analysis of expanded mixed methods for fourth order elliptic problems, Numer. Methods PDEs 13, 483–503.

    Google Scholar 

  • Z. Chen (2000), Formulations and numerical methods for the black-oil model in porous media, SIAM J. Numer. Anal. 38, 489–514.

    Article  Google Scholar 

  • Z. Chen (2001A), On the relationship of various discontinuous finite element methods for second-order elliptic equations, East-West J. Numer. Math. 9, 99–122.

    MathSciNet  Google Scholar 

  • Z. Chen (2001B), Degenerate two-phase incompressible flow I: Existence, uniqueness and regularity of a weak solution, J. Diff. Equ. 171, 203–232.

    Article  Google Scholar 

  • Z. Chen (2002A), Degenerate two-phase incompressible flow II: Regularity, stability and stabilization, J. Diff. Equ. 186, 345–376.

    Article  Google Scholar 

  • Z. Chen (2002B), Characteristic mixed discontinuous finite element methods for advection-dominated diffusion problems, Comp. Meth. Appl. Mech. Eng. 191, 2509–2538.

    Article  Google Scholar 

  • Z. Chen (2002C), Relationships among characteristic finite element methods for advection-diffusion problems, J. Korean SIAM 6, 1–15.

    Google Scholar 

  • Z. Chen, B. Cockburn, C. Gardner, and J. W. Jerome (1995A), Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode, J. Comp. Phys. 117, 274–280.

    Article  Google Scholar 

  • Z. Chen, B. Cockburn, J. W. Jerome, and C. W. Shu (1995B), Mixed-RKDG finite element methods for the 2-D hydrodynamic model for semiconductor device simulation, VLSI Des. 3, 145–158.

    Google Scholar 

  • Z. Chen, Y. Cui, and Q. Jiang (2004A), Locking-free nonconforming finite elements for planar linear elasticity, Dynamical Systems and Differential Equations, to appear.

    Google Scholar 

  • Z. Chen and J. Douglas, Jr. (1989), Prismatic mixed finite elements for second order elliptic problems, Calcolo 26, 135–148.

    Google Scholar 

  • Z. Chen and J. Douglas, Jr. (1991), Approximation of coefficients in hybrid and mixed methods for nonliner parabolic problems, Mat. Aplic. Comp. 10, 137–160.

    Google Scholar 

  • Z. Chen, M. Espedal, and R. E. Ewing (1995), Continuous-time finite element analysis of multiphase flow in groundwater hydrology, Appl. Math. 40, 203–226.

    Google Scholar 

  • Z. Chen and R. E. Ewing (1997A), Comparison of various formulations of three-phase flow in porous media, J. Comp. Phys. 132, 362–373.

    Article  Google Scholar 

  • Z. Chen and R. E. Ewing (1997B), Fully-discrete finite element analysis of multiphase flow in groundwater hydrology, SIAM J. Numer. Anal. 34, 2228–2253.

    Article  Google Scholar 

  • Z. Chen and R. E. Ewing (2001), Degenerate two-phase incompressible flow III: Sharp error estimates, Numer. Math. 90, 215–240.

    Article  Google Scholar 

  • Z. Chen and R. E. Ewing (2003), Degenerate two-phase incompressible flow IV: Local refinement and domain decomposition, J. Sci. Comput. 18, 329–360.

    Article  Google Scholar 

  • Z. Chen, R. E. Ewing, Q. Jiang, and A. M. Spagnuolo (2002), Degenerate two-phase incompressible flow V: Characteristic finite element methods, J. Numer. Math. 10, 87–107.

    MathSciNet  Google Scholar 

  • Z. Chen, R. E. Ewing, Q. Jiang, and A. M. Spagnuolo (2003C), Error analysis for characteristics-based methods for degenerate parabolic problems, SIAM J. Numer. Anal. 40, 1491–1515.

    Article  Google Scholar 

  • Z. Chen, R. E. Ewing and R. Lazarov (1996), Domain decomposition algorithms for mixed methods for second order elliptic problems, Math. Comp. 65, 467–490.

    Article  Google Scholar 

  • Z. Chen and G. Huan (2003), Numerical experiments with various formulations for two phase flow in petroleum reservoirs, Transport in Porous Media 51, 89–102.

    Article  Google Scholar 

  • Z. Chen, G. Huan, and Y. Ma (2004B), Computational Methods for Multiphase Flows in Porous Media, in progress.

    Google Scholar 

  • Z. Chen and P. Oswald (1998), Multigrid and multilevel methods for nonconforming rotated Q1 elements, Math. Comp. 67, 667–693.

    Article  Google Scholar 

  • Z. Chen, G. Qin, and R. E. Ewing (2000), Analysis of a compositional model for fluid flow in porous media, SIAM J. Appl. Math. 60, 747–777.

    Article  Google Scholar 

  • I. Christie, D. F. Griffiths, and A. R. Mitchell (1976), Finite element methods for second order differential equations with significant first derivatives, Int. J. Num. Eng. 10, 1389–1396.

    Article  Google Scholar 

  • P. G. Ciarlet (1978), The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam.

    Google Scholar 

  • P. G. Ciarlet (1988), Mathematical Elasticity, vol. I: Three-Dimensional Elasticity, North-Holland, Amsterdam.

    Google Scholar 

  • P. G. Ciarlet and P.-A. Raviart (1972), The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, in the Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz, ed., Academic Press, New York, pp. 409–474.

    Google Scholar 

  • Ph. Clément (1975), Approximation by finite element functions using local regularization, RAIRO Anal. Numér. 2, 77–84.

    Google Scholar 

  • B. Cockburn, G. E. Karniadakis, and C. W. Shu (2000), Discontinuous Galerkin methods, Theory, Computation and Application, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer, Berlin Heidelberg New York.

    Google Scholar 

  • B. Cockburn and C.-W. Shu (1998), The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35, 2440–2463.

    Article  Google Scholar 

  • B. Cockburn, S. Hou, and C. W. Shu (1990), TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws IV: the multidimensional case, Math. Comp. 54, 545–581.

    Google Scholar 

  • J. B. Conway (1985), A Course in Functional Analysis, Springer, New York Berlin Heidelberg.

    Google Scholar 

  • M. Crouzeix and P. Raviart (1973), Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO 3, 33–75.

    Google Scholar 

  • R. Courant (1943), Variational methods for the solution of problems of equilibrium and vibrations, Bull. Amer. Math. Soc. 49, 1–23.

    Google Scholar 

  • H. K. Dahle, R. E. Ewing, and T. F. Russell (1995), Eulerian-Lagrangian localized adjoint methods for a nonlinear advection-diffusion equation, Comput. Meth. Appl. Mech. Eng. 122, 223–250.

    Article  Google Scholar 

  • M. Dauge (1988), Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Math., vol. 1341, Springer, Berlin Heidelberg New York.

    Google Scholar 

  • C. N. Dawson, T. F. Russell, and M. F. Wheeler (1989), Some improved error estimates for the modified method of characteristics, SIAM J. Numer. Anal. 26, 1487–1512.

    Article  Google Scholar 

  • L. M. Delves and C. A. Hall (1979), An implicit matching principle for global element calculations, J. Inst. Math. Appl. 23, 223–234.

    Google Scholar 

  • P. Deuflhard, P. Leinen, and H. Yserentant (1989), Concepts of an adaptive hierarchical finite element code, IMPACT Comput. Sci. Eng. 1, 3–35.

    Article  Google Scholar 

  • J. C. Diaz, R. E. Ewing, R. W. Jones, A. E. McDonald, I. M. Uhler, and D. U. von Rosenberg (1984), Self-adaptive local grid-refinement for time-dependent, two-dimensional simulation, Finite Elements in Fluids, vol. VI, Wiley, New York, 479–484.

    Google Scholar 

  • J. Douglas, Jr. (1961), A survey of numerical methods for parabolic differential equations, in Advances in Computers, F. L. Alt, ed., vol. 2, Academic Press, New York, 1–54.

    Google Scholar 

  • J. Douglas, Jr. (1977), H1-Galerkin methods for a nonlinear Dirichlet problem, in Proceedings of the Conference “Mathematical Aspects of the Finite Element Methods”, Lecture Notes in Math, vol. 606, Springer, Berlin Heidelberg New York, pp. 64–86.

    Google Scholar 

  • J. Douglas, Jr. and T. Dupont (1976), Interior penalty procedures for elliptic and parabolic Galerkin methods, Lecture Notes in Physics, vol. 58, Springer, Berlin Heidelberg New York, pp. 207–216.

    Google Scholar 

  • J. Douglas, Jr., R. Durán, and P. Pietra (1987), Formulation of alternating-direction iterative methods for mixed methods in three space, in the Proceedings of the Simposium Internacional de Analisis Numérico, E. Ortiz, ed., Madrid, pp. 21–30.

    Google Scholar 

  • J. Douglas, Jr., R. E. Ewing, and M. Wheeler (1983), The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Anal. Numér. 17, 17–33.

    Google Scholar 

  • J. Douglas, Jr., F. Furtado, and F. Pereira (1997), On the numerical simulation of water flooding of heterogeneous petroleum reservoirs, Computational Geosciences 1, 155–190.

    Article  Google Scholar 

  • J. Douglas, Jr., I. Gamba, and M. C. J. Squeff (1986), Simulation of the transient behavior of a one-dimensional semiconductor device, Mat. Aplic. Comp. 5, 103–122.

    Google Scholar 

  • J. Douglas, Jr., D. W. Peaceman, and H. H. Rachford, Jr. (1959), A method for calculating multi-dimensional immiscible displacement, Trans. SPE AIME 216, 297–306.

    Google Scholar 

  • J. Douglas, Jr., F. Pereira, and L. M. Yeh (2000), A locally conservative Eulerian-Lagrangian numerical method and its application to nonlinear transport in porous media, Comput. Geosci. 4, 1–40.

    Article  Google Scholar 

  • J. Douglas, Jr. and P. Pietra (1985), A description of some alternating-direction techniques for mixed finite element methods, in Mathematical and Computational Methods in Seismic Exploration and Reservoir Modeling, SIAM, Philadelphia, PA, pp. 37–53.

    Google Scholar 

  • J. Douglas, Jr. and J. Roberts (1985), Global estimates for mixed methods for second order elliptic problems, Math. Comp. 45, 39–52.

    Google Scholar 

  • J. Douglas, Jr. and T. F. Russell (1982), Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal. 19, 871–885.

    Article  Google Scholar 

  • T. Dupont and R. Scott (1980), Polynomial approximation of functions in Sobolev spaces, Math. Comp. 34, 441–463.

    Google Scholar 

  • V. Eijkhout and P. Vassilevski (1991), The role of the strengthened Cauchy-Bujanowsky-Schwarz inequality in multilevel methods, SIAM Rev. 33, 405–419.

    Article  Google Scholar 

  • H. Elman and G. Golub (1994), Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal. 31, 1645–1661.

    Article  Google Scholar 

  • K. Eriksson and C. Johnson (1991), Adaptive finite element methods for parabolic problems I: A linear model problem, SIAM J. Numer. Anal. 28, 43–77.

    Article  Google Scholar 

  • K. Eriksson and C. Johnson (1995), Adaptive finite element methods for parabolic problems IV: Nonlinear problems, SIAM J. Numer. Anal. 32, 1729–1749.

    Article  Google Scholar 

  • N. S. Espedal and R. E. Ewing (1987), Characteristic Petrov-Galerkin subdomain methods for two phase immiscible flow, Comput. Methods Appl. Mech. Eng. 64, 113–135.

    Article  Google Scholar 

  • R. E. Ewing (1986), Efficient adaptive procedures for fluid flow applications, Comp. Meth. Appl. Mech. Eng. 55, 89–103.

    Article  Google Scholar 

  • R. E. Ewing, R. Lazarov, P. Lu, and P. Vassilevski (1990), Preconditioning indefinite systems arising from the mixed finite element discretization of second-order elliptic systems, in Preconditioned Conjugate Gradient Methods, O. Axelsson and L. Kolotilina, eds., Lecture Notes in Math., vol. 1457, Springer, Berlin Heidelberg New York, pp. 28–43.

    Google Scholar 

  • R. E. Ewing, T. F. Russell, and M. F. Wheeler (1984), Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics, Comp. Meth. Appl. Mech. Eng. 47, 73–92.

    Article  Google Scholar 

  • R. E. Ewing and J. Wang (1992), Analysis of mixed finite element methods on locally refined grids, Numer. Math. 63, 183–194.

    Article  Google Scholar 

  • D. Ferry and R. Grondin (1992), Physics of Sub-Micron Devices, New York, Plenum.

    Google Scholar 

  • R. Feynman (1960), There's plenty of room at the bottom, Eng. Sci. Feb., 22–36.

    Google Scholar 

  • M. Fortin (1977), An analysis of the convergence of mixed finite element methods, RAIRO Anal. Numér. 11, 341–354.

    Google Scholar 

  • M. Fortin and Soulie (1983), A nonconforming piecewise quadratic finite element on triangles, Int. J. Numer. Methods Eng. 19, 505–520.

    Article  Google Scholar 

  • B. Fraeijs de Veubeke (1965), Displacement and equilibrium models in the finite element method, Stress Analysis, O. C. Zienkiewicz and G. Holister, eds., Wiley, New York.

    Google Scholar 

  • B. Fraeijs de Veubeke (1974), Variational principles and the patch test, Int. J. Numer. Methods Eng. 8, 783–801.

    Article  Google Scholar 

  • W. R. Frensley (1985), Simulation of resonant-tunneling heterostructure devices, J. Vacuum Sci. Technol. B3, 1261–1266.

    Google Scholar 

  • A. O. Garder, D. W. Peaceman, and A. L. Pozzi (1964), Numerical calculations of multidimensional miscible displacement by the method of characteristics, Soc. Pet. Eng. J. 4, 26–36.

    Google Scholar 

  • V. Girault and P.-A. Raviart (1981), Finite Element Approximation of the Navier-Stokes Equations, Springer, Berlin Heidelberg New York.

    Google Scholar 

  • R. Glowinski (2003), Handbook of Numerical Analysis: Numerical Methods for Fluids, Elsevier.

    Google Scholar 

  • G. H. Golub and C. F. Van Loan (1996), Matrix Computations, Johns Hopkins University Press, Baltimore and London.

    Google Scholar 

  • H. Grubin and J. Kreskovsky (1989), Quantum moment balance equations and resonant tunneling structures, Solid State Electron. 32, 1071–1075.

    Article  Google Scholar 

  • W. Hackbusch (1985), Multigrid Methods and Applications, Springer, Berlin Heidelberg New York.

    Google Scholar 

  • K. Hellan (1967), Analysis of elastic plates in flexure by a simplified finite element method, Acta Polytechnica Scandinavia, Civil Engineering Series, Trondheim 46.

    Google Scholar 

  • P. Henrici (1962), Discrete Variable Methods in Ordinary Differential Equations, Wiley, New York.

    Google Scholar 

  • L. R. Herrmann (1967), Finite element bending analysis for plates, J. Eng. Mech. Div. ASCE 93, 13–26.

    Google Scholar 

  • R. H. Hoppe and B. Wohlmuth (1997), Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems, SIAM J. Numer. Anal. 34, 1658–1681.

    Article  Google Scholar 

  • T. J. R. Hughes, G. Engel, L. Mazzei, and M. G. Larson (2000), A comparison of discontinuous and continuous Galerkin methods based on error estimates, conservation, robustness and efficiency, in Discontinuous Galerkin Methods, Theory, Computation and Applications, B. Cockburn, et al., eds., Lecture Notes in Computational Science and Engineering, vol. 11, Springer, Berlin Heidelberg New York, pp. 135–146.

    Google Scholar 

  • J. W. Jerome (1985), Consistency of semiconductor modeling: An existence/stability analysis for the stationary van Roosbroeck system, SIAM J. Appl. Math. 54, 565–590.

    Article  Google Scholar 

  • C. Johnson (1994), Numerical Solutions of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge.

    Google Scholar 

  • C. Johnson and J. Pitkaranta (1986), An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp. 46, 1–26.

    Google Scholar 

  • C. Johnson and V. Thomée (1981), Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numer. 15, 41–78.

    Google Scholar 

  • W. Kaplan (1991), Advanced Calculus, 4th Ed., Addison Wesley, Publishing Company, Inc.

    Google Scholar 

  • N. C. Kluksdahl, A. M. Kriman, D. K. Ferry, and C. Ringhofer (1989), Self-consistent study of the resonant tunneling diode, Phys. Rev. B 39, 7720–7735.

    Article  Google Scholar 

  • V. A. Kondratev (1967), Boundary value problems for elliptic equations with conical or angular point, Trans. Moscow Math. Soc. 10, 227–313.

    Google Scholar 

  • P. Lascaux and P. LeSaint (1975), Some nonconforming finite elements for the plate bending problem, RAIRO Anal. Numer. 9, 9–53.

    Google Scholar 

  • P. LeSaint and P. A. Raviart (1974), On a finite element method for solving the neutron transport equation, in Mathematical Aspects of Finite Elements in Partial Differential Equations, C. de Boor, ed., Academic Press, 89–145.

    Google Scholar 

  • K. Li, A. Huang, and Q. Huang (1984), The Finite Element Method and its Application, Xi'an Jiaotong University Press, Xi'an, China, in Chinese.

    Google Scholar 

  • J. L. Lions and E. Magenes (1972), Non-homogeneous Boundary Value Problems and Applications, Springer, New York Berlin Heidelberg.

    Google Scholar 

  • P. A. Markowich (1986), The Stationary Semiconductor Equations, Springer, New York Berlin Heidelberg.

    Google Scholar 

  • P. A. Markowich, C. A. Ringhofer, and C. Schmeiser (1990), Semiconductor Equations, Springer, New York Berlin Heidelberg.

    Google Scholar 

  • K. Miller and R. N. Miller (1981), Moving finite elements, SIAM J. Numer. Anal. 18, 79–95.

    Google Scholar 

  • F. Milner (1985), Mixed finite element methods for quasilinear second order elliptic problems, Math. Comp. 44, 303–320.

    Google Scholar 

  • P. K. Moore (2001), Interpolation error-based a posteriori error estimation for two-point boundary value problems and parabolic equations in one space dimension, Numer. Math. 90, 149–177.

    Google Scholar 

  • L. Morley (1968), The triangular equilibrium problem in the solution of plate bending problems, Aero. Quart. 19, 149–169.

    Google Scholar 

  • J. C. Néd'elec (1980), Mixed finite elements in IR3, Numer. Math. 35, 315–341.

    Article  Google Scholar 

  • J. C. Néd'elec (1986), A new family of mixed finite elements in IR3Numer. Math. 50, 57–81.

    Article  Google Scholar 

  • S. P. Neuman (1981), An Eulerian-Lagrangian numerical scheme for the dispersion-convection equation using conjugate-time grids, J. Comp. Phys. 41, 270–294.

    Article  Google Scholar 

  • J. A. Nitsche (1968), Ein kriterium für die quasi-optimalitat des Ritzchen Verfahrens, Numer. Math. 11, 346–348.

    Article  Google Scholar 

  • J. A. Nitsche (1971), Über ein variationsprinzip zur lösung von Dirichlet problem bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg 36, 9–15.

    Google Scholar 

  • J. Nougier, J. Vaissiere, D. Gasquet, J. Zimmermann, and E. Constant (1981), Determination of the transient regime in semiconductor devices using relaxation time approximations, J. Appl. Phys. 52, 825–832.

    Article  Google Scholar 

  • J. T. Oden, I. Babuška, and C. E. Baumann (1998), A discontinuous hp finite element method for diffusion problems, J. Comput. Phys. 146, 491–519.

    Article  Google Scholar 

  • J. T. Oden and L. Demkowicz (1988), Advances in adaptive improvements: A survey of adaptive finite element methods in computational mechanics, State-of-the-Art Surveys in Computational Mechanics, A. K. Noor and J. T. Oden, eds., A.S.M.E. Publications, New York.

    Google Scholar 

  • J. T. Oden, L. Demkowicz, W. Rachowicz, and T. A. Westermann (1989), Toward a universal h—p adaptive finite element strategy, Part 2. A posteriori error estimation, Comp. Meth. Appl. Mech. Engrg. 77, 113–180.

    Article  Google Scholar 

  • E. R. Oliveira (1971), Optimization of finite element solutions, Proceedings of the Third Conference on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, Ohio, October.

    Google Scholar 

  • J. M. Ortega and W. C. Rheinboldt (1970), Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York.

    Google Scholar 

  • A. M. Ostrowski (1973), Solution of Equations in Euclidean and Banach Spaces, 3rd Edition, Academic Press, New York.

    Google Scholar 

  • C. Paige and M. Saunders (1975), Solution of sparse indefinite systems of linear equations, SIAM Numer. Anal. 12, 617–629.

    Article  Google Scholar 

  • D. W. Peaceman (1977A), Interpretation of well-block pressures in numerical reservoir simulation, SPE 6893, 52nd Annual Fall Technical Conference and Exhibition, Denver.

    Google Scholar 

  • D. W. Peaceman (1977B), Fundamentals of Numerical Reservoir Simulation, Elsevier, New York.

    Google Scholar 

  • D. W. Peaceman (1991), Presentation of a horizontal well in numerical reservoir simulation, SPE 21217, presented at 11th SPE Symposium on Reservoir Simulation in Ananheim, California, Feb. 17–20.

    Google Scholar 

  • C. Philippidis, D. Bohm, and R. D. Kaye (1982), The Aharonov-Bohm effect and the quantum potential, Il Nuovo Cimento 71B, 75–88.

    Google Scholar 

  • O. Pironneau (1982), On the transport-diffusion algorithm and its application to the Navier-Stokes equations, Numer. Math. 38, 309–332.

    Article  Google Scholar 

  • A. Quarteroni and A. Valli (1997), Numerical Approximation of Partial Differential Equations, Lecture Notes in Comp. Math., Vol. 23, Springer, Berlin Heidelberg New York.

    Google Scholar 

  • R. Rannacher and S. Turek (1992), Simple nonconforming quadrilateral Stokes element, Numer. Meth. Part. Diff. Equ. 8, 97–111.

    Article  Google Scholar 

  • R. Raviart, and J.-M. Thomas (1977), A mixed finite element method for second order elliptic problems, Lecture Notes in Mathematics, vol. 606, Springer, Berlin Heidelberg New York, pp. 292–315.

    Google Scholar 

  • W. H. Reed and T. R. Hill (1973), Triangular mesh methods for the neutron transport equation, Technical Report, LA-UR-73-479, Los Alamos Scientific Laboratory.

    Google Scholar 

  • W. C. Rheinboldt (1998), Methods for Solving Systems of Nonlinear Equations, 2nd Edition, Society for Industrial and Applied Mathematics, Philadelphia.

    Google Scholar 

  • W. C. Rheinboldt and C. Mesztenyi (1980), On a data structure for adaptive finite element mesh refinement, ACM Trans. Math. Softw. 6, 166–187.

    Article  Google Scholar 

  • M. C. Rivara (1984A), Algorithms for refining triangular grids suitable for adaptive and multigrid techniques, Int. J. Num. Meth. Eng. 20, 745–756.

    Article  Google Scholar 

  • M. C. Rivara (1984B), Design and data structure of fully adaptive, multigrid, finite element software, ACM Trans. Math. Softw. 10, 242–264.

    Article  Google Scholar 

  • B. Rivière, M. F. Wheeler, and V. Girault (1999), Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I. Comput. Geosci. 3, 337–360.

    Article  Google Scholar 

  • J. E. Roberts and J.-M. Thomas (1989), Mixed and hybrid methods, Handbook of Numerical Analysis, P. G. Ciarlet and J. L. Lions, eds., vol. II, Finite Element Methods (Part 1), North-Holland, Amsterdam.

    Google Scholar 

  • R. Rodriguez (1994), Some remarks on Zienkiewicz-Zhu estimator, Int. J. Numer, Meth. PDE 10, 625–635.

    Google Scholar 

  • W. Rudin (1987), Real and Complex Analysis, 3rd Ed., McGraw-Hill. New York.

    Google Scholar 

  • T. F. Russell (1990), Eulerian-Lagrangian localized adjoint methods for advection-dominated problems, in Numerical Analysis, Pitman Res. Notes Math. Series, vol. 228, D. F. Griffiths and G. A. Watson, eds., Longman Scientific and Technical, Harlow, England, pp. 206–228.

    Google Scholar 

  • T. F. Russell and R. V. Trujillo (1990), Eulerian-Lagrangian localized adjoint methods with variable coefficients in multiple dimensions, Gambolati, et al., eds., Comp. Meth. in Surface Hydrology, Springer, Berlin Heidelberg New York, pp. 357–363.

    Google Scholar 

  • T. F. Russell and M. F. Wheeler (1983), Finite element and finite difference methods for continuous flows in porous media, the Mathematics of Reservoir Simulation, R. E. Ewing, ed., SIAM, Philadelphia, pp. 35–106.

    Google Scholar 

  • T. Rusten and R. Winther (1992), A preconditioned iterative method for saddle-point problems, SIAM J. Matrix Anal. Appl. 13, 887–904.

    Article  Google Scholar 

  • M. Sheffield (1970), A non-iterative technique for solving parabolic partial differential equation problems, SPE 2803, 2nd Symposium on Numerical Simulation of Reservoir Performance, Dallas, Texas.

    Google Scholar 

  • J.W. Sheldon, B. Zondek, and W.T. Cardwell (1959), One-dimensional, incompressible, non-capillary, two-phase fluid flow in a porous medium, Trans. SPE AIME 216, 290–296.

    Google Scholar 

  • Z.-C. Shi (1987), The F-E-M-test for nonconforming finite elements, Math. Comp. 49, 391–405.

    Google Scholar 

  • B. Smith, P. Bjorstad, and W. Gropp (1996), Domain Decomposition, Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, Cambridge.

    Google Scholar 

  • G. Strang and G. J. Fix (1973), An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • B. A. Szabo (1986), Mesh design for the p-version of the finite element method, Comp. Meth. Appl. Mech. Eng. 55, 86–104.

    Google Scholar 

  • V. Thomée (1984), Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Math., vol. 1054, Springer, Berlin Heidelberg New York.

    Google Scholar 

  • W. V. van Roosbroeck (1950), Theory of flow of electrons and holes in germanium and other semiconductors, Bell Syst. Techn. J. 29, 560–607.

    Google Scholar 

  • R. Verfürth (1996), A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, Chichester-Stuttgart.

    Google Scholar 

  • H. Wang (2000), An optimal-order error estimate for an ELLAM scheme for two-dimensional linear advection-diffusion equations, SIAM J. Numer. Anal. 37, 1338–1368.

    Article  Google Scholar 

  • H. Wang, R. E. Ewing, and T. F. Russell (1995), Eulerian-Lagrangian localized adjoint methods for convection-diffusion equations and their convergence analysis, IMA J. Numer. Anal. 15, 405–459.

    Google Scholar 

  • J. Wang and T. Mathew (1994), Mixed finite element methods over quadrilaterals, In the Proceedings of the Third International Conference on Advances in Numerical Methods and Applications, I. T. Dimov, et al., eds., World Scientific, 203–214.

    Google Scholar 

  • J. J. Westerink and D. Shea (1989), Consistent higher degree Petrov-Galerkin methods for the solution of the transient convection-diffusion equation, Int. J. Num. Meth. Eng. 13, 839–941.

    Google Scholar 

  • M. F. Wheeler (1973), A priori L2 error estimates for Galerkin approximation to parabolic partial differential equations, SIAM J. Numer. Anal. 10, 723–759.

    Article  Google Scholar 

  • M. F. Wheeler (1978), An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal. 15, 152–161.

    Article  Google Scholar 

  • E. Wigner (1932), On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, 749–759.

    Article  Google Scholar 

  • D. Yang (1992), A characteristic mixed method with dynamic finite element space for convection-dominated diffusion problems, J. Comput. Appl. Math. 43, 343–353.

    Article  Google Scholar 

  • K. Yosida (1971), Functional Analysis, 3rd Edition, Springer, Berlin Heidelberg New York.

    Google Scholar 

  • O. C. Zienkiewicz and J. Zhu (1987), A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Num. Meth. Eng. 24, 337–357.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Semiconductor Modeling. In: Finite Element Methods and Their Applications. Scientific Computation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28078-2_10

Download citation

Publish with us

Policies and ethics