Skip to main content

Bearing Surfaces for Motion Control in Total Knee Arthroplasty

  • Chapter
Total Knee Arthroplasty

Summary

A goal of knee replacement is to achieve normal function and kinematics. One solution is to preserve all of the ligaments and use compartmental components. However, if complete resurfacing is indicated, one or both of the cruciates is usually resected, and dished bearing surfaces are used to replace their function. Intercondylar cams can be added to ensure posterior femoral contacts in high flexion. In this paper, an alternative scheme is presented where the bearing surfaces are not simple combinations of radii but are based on converging or diverging mediallateral bearing spacing as flexion proceeds. This scheme produces natural roll-back with flexion, more pronounced on the lateral side, while preserving the laxity which is characteristic of the normal knee. It is proposed that this design can produce natural knee kinematics which may result in close to normal function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akagi M et al (2000) The bisurface total knee replacement: a unique design for flexion. J Bone Joint Surg [Am] 82:1626–1633

    PubMed  Google Scholar 

  2. Ateshian GA et al (1991) Quantitation of articular surface topography and cartilage thickness in knee joints using stereophotogrammetry. J Biomech 24:761–776

    Article  PubMed  Google Scholar 

  3. Ateshian GA (2003) Topography of knee femoral articular surface. (Personal communication)

    Google Scholar 

  4. Blankevoort L et al (1988) The envelope of passive knee joint motion. J Biomech 21:705–720

    PubMed  Google Scholar 

  5. Buechel FF (2002) Long-term follow-up after mobile bearing total knee replacement. Clin Orthop 404:40–50

    PubMed  Google Scholar 

  6. Callaghan CM et al (1995) Patient outcomes following unicompartmental or bicompartmental knee arthroplasty: a meta-analysis. J Arthroplasty 10:141–50

    PubMed  Google Scholar 

  7. Cohen ZA et al (2003) Templates of the cartilage layers of the patellofemoral joint and their use in the assessment of osteoarthritic cartilage damage. Osteoarthritis Cartilage 11:569–579

    Article  PubMed  Google Scholar 

  8. Draganich L et al (1998) TRAC PS knee design and clinical outcome. Abstracts Book, Annual Symposium of the Int Soc for Technology in Arthroplasty. Marseille, pp 96–99

    Google Scholar 

  9. Ewald FC (1974) Joint prostheses. United States Patent, number 3798679, March

    Google Scholar 

  10. Ewald FC (1989) The Knee Society total knee arthroplasty roentgenographic evaluation and scoring system. Clin Orthop 248:9–12

    PubMed  Google Scholar 

  11. Feikes JD et al (1998) The unique track of intact passive knee motion as a kinematic baseline. Trans Orthop Res Soc 23:170

    Google Scholar 

  12. Haider H, Walker PS (2005) Measurements of constraint of total knee replacement. J Biomech 38:341–348

    Article  PubMed  Google Scholar 

  13. Hill PF et al (2000) Tibiofemoral movement. II: The loaded and unloaded knee studied by MRI. J Bone Joint Surg [Br] 82:1196–1198

    Article  Google Scholar 

  14. Insall JH, Clarke HD (2001) Historic development, classification, and characteristics of knee prostheses. In: Insall JH (ed) Surgery of the knee, 3rd edn. Chap 73, vol 2, pp 1516–1552

    Google Scholar 

  15. Iwaki H et al (2000) Tibiofemoral movement. I: The shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg [Br] 82:1189–1195

    Article  PubMed  Google Scholar 

  16. Li G, Zayontz et al (2003) Kinematics of the knee at high flexion angles. J Orthop Res 22:90–95

    Article  Google Scholar 

  17. Luger E et al (1997) Inherent differences in the laxity and stability between the intact knee and total knee replacements. Knee 4:7–14

    Article  Google Scholar 

  18. MacWilliams BA et al (1999) Hamstrings co-contraction reduces internal rotation, anterior translation, and anterior cruciate ligament load in weight-bearing flexion. J Orthop Res 17:817–822

    Article  PubMed  Google Scholar 

  19. Murray DG et al (1982) The variable axis prosthesis: 2-year follow-up study. J Bone Joint Surg [Am] 63:687–694

    Google Scholar 

  20. Nakagawa S et al (2000) Tibiofemoral movement: full flexion in the living knee studied by MRI. J Bone Joint Surg [Br] 82:1199–2000

    Article  PubMed  Google Scholar 

  21. Rovick JS et al (1991) Relation between knee motion and ligament length patterns. Clin Biomech 6:213–220

    Article  Google Scholar 

  22. Sathasivam S et al (1997) A computer model with surface friction for the prediction of total knee kinematics. J Biomech 30:177–184

    Article  PubMed  Google Scholar 

  23. Sathasivam S et al (1999) The conflicting requirements of laxity and conformity in total knee replacement. J Biomech 32:239–247

    Article  PubMed  Google Scholar 

  24. Seedhom BB et al (1974) The Leeds knee. Proc Institution of Mechanical Engineers, London, Symposium on Total Knee Replacement. CP16:108–114

    Google Scholar 

  25. Thompson WO et al (1991) Tibial meniscus dynamics using threedimensional reconstruction of the magnetic resonance images. Am J Sports Med 19:210–216

    PubMed  Google Scholar 

  26. Walker PS et al (1974) Proc Institution of Mechanical Engineers, London, Symposium on Total Knee Replacement. CP16: 22–29

    Google Scholar 

  27. Walker PS (1991) Design of Kinemax total knee replacement bearing surfaces. Acta Orthop Belg 57:108–113

    Google Scholar 

  28. Walker PS et al (1999) The design of guide surfaces for fixed-bearing and mobile-bearing knee replacements. J Biomech 32:27–34

    Article  PubMed  Google Scholar 

  29. Walker PS et al (2000) Controlling the Motion of total knee replacement using intercondylar guide surfaces. J Orthop Res 18:48–55

    Article  PubMed  Google Scholar 

  30. Walker PS (2001) A new concept in guided motion total knee arthroplasty. J Arthroplasty 16:157–163

    Article  PubMed  Google Scholar 

  31. Walker PS et al (2003) Characterising the motion of total knee replacements in laboratory tests. Clin Orthop 410:54–68

    PubMed  Google Scholar 

  32. Weiss JM et al (2002) What functional activities are important to patients with knee replacements? Clin Orthop 404:172–188

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Walker, P.S. (2005). Bearing Surfaces for Motion Control in Total Knee Arthroplasty. In: Bellemans, J., Ries, M.D., Victor, J.M. (eds) Total Knee Arthroplasty. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27658-0_47

Download citation

  • DOI: https://doi.org/10.1007/3-540-27658-0_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20242-4

  • Online ISBN: 978-3-540-27658-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics