Skip to main content

Mjølnir Crater as a Result of Oblique Impact: Asymmetry Evidence Constrains Impact Direction and Angle

  • Chapter
Impact Tectonics

Part of the book series: Impact Studies ((IMPACTSTUD))

Abstract.

The 40-km-diameter Mjølnir crater is proposed to have resulted from an oblique impact from the south/southwest direction and at a ~45° (possibly 30°–45°) angle from the horizontal. This is substantiated by several diagnostic structural and geophysical signatures related to obliquity and revealed through detailed re-assessment of Mjølnir’s well-established structure, morphology, and gravity and seismic velocity anomalies. The diagnostic signatures include: (1) a dominant N-S/NNE-SSW crater diameter elongation, (2) a consistent northward asymmetry both in the crater radius and the shallow part of the impact-induced seismic disturbance, (3) a peak ring breached towards the N/NE, (4) an annular gravity low with a horseshoeshape open towards the NE, (5) a transient cavity maximum-depth offset of 2 to 2.5 km towards south-southwest from the geometric crater center, combined with a similar structural uplift lateral offset towards the south, a similar central gravity high offset towards southwest, and an elongated traveltime central anomaly offset towards WSW. The oblique Mjølnir impact most probably generated a down-range sector/corridor of thicker ejecta deposits and faster travelling tsunami-waves, triggering short-term regional perturbations that are probably intensified within and adjacent to this sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexopoulos JS, McKinnon WB (1994) Large impact craters and basins on Venus, with implications for ring mechanics on the terrestrial planets. In: Dressler BO, Grieve RAF, Sharpton VL (eds) Large Meteorite Impacts and Planetary Evolution. Geological Society of America Special Paper 293: 29–50

    Google Scholar 

  • Anderson RR, Witzke BJ, Roddy DJ (1996) The drilling of the 1991-1992 Geological Survey Bureau and U.S. Geological Survey Manson impact structure research cores. In: Koeberl C, Anderson RR (eds) The Manson Impact Structure, Iowa: Anatomy of an Impact Crater. Geological Society of America Special Paper 302: 45–88

    Google Scholar 

  • Artemieva NA, Shuvalov VV (2001) Extraterrestrial material deposition after the impacts into continental and oceanic sites. In: Buffetaut E, Koeberl C (eds) Impact Studies (Geological and biological effects of impact events), Springer Verlag, Berlin-Heidelberg, pp 249–263

    Google Scholar 

  • Brekke H, Sjulstad HI, Magnus C, Williams RW (2001) Sedimentary environments offshore Norway-an overview. In: Martinsen OJ, Dreyer T (eds) Sedimentary Environments Offshore Norway-Paleozoic to Recent. Norwegian Petroleum Society Special Publication 10: 7–37

    Google Scholar 

  • Burchell MJ, Mackay NG (1998) Crater ellipticity in hypervelocity impact on metals. Journal of Geophysical Research 103: 22761–22774

    Article  ISI  Google Scholar 

  • Croft SK (1985) The scaling of complex craters. Proceedings of the 15th Lunar and Planetary Science Conference, part 2: Journal of Geophysical Research 90(supplement): C828–C842.

    ISI  Google Scholar 

  • Dahl JM, Schultz PH (2000) Strain rate measurements in vertical and oblique projectile impact experiments [abs.]. Lunar and Planetary Science XXXI (Lunar and Planetary Institute, Houston, Texas): abs. #1901 (CD-ROM)

    Google Scholar 

  • Dahl JM, Schultz PH (2001) Measurements of stress wave asymmetries in hypervelocity projectile impact experiments. International Journal of Impact Engineering 26: 145–155

    Article  ISI  Google Scholar 

  • Dypvik H, Attrep M Jr (1999) Geochemical signals of the late Jurassic, marine Mjølnir impact. Meteoritics and Planetary Science 34: 393–406

    Article  Google Scholar 

  • Dypvik H, Gudlaugsson ST, Tsikalas F, Attrep M Jr, Ferrell RE Jr, Krinsley DH, Mørk A, Faleide JI, Nagy J (1996) Mjølnir structure: An impact crater in the Barents Sea. Geology 24: 779–782

    Article  ISI  Google Scholar 

  • Ekholm AG, Melosh HJ (2001) Crater features diagnostic of oblique impacts; the size and position of the central peak. Geophysical Research Letters 28: 623–626

    Article  ISI  Google Scholar 

  • Faleide JI, Vågnes E, Gudlaugsson ST (1993) Late Mesozoic-Cenozoic evolution of the southwestern Barents Sea in a regional rift-shear tectonic setting. Marine and Petroleum Geology 10: 186–214

    Article  ISI  Google Scholar 

  • Gabrielsen RH, Færseth RB, Jensen LN, Kalheim JE, Riis F (1990) Structural elements of the Norwegian continental shelf. Part I: The Barents Sea region. Norwegian Petroleum Directorate Bulletin No. 6, 33 pp

    Google Scholar 

  • Gault DE, Wedekind JA (1978) Experimental studies of oblique impact. Proceedings of the 9th Lunar and Planetary Science Conference, pp 3843–3875

    Google Scholar 

  • Grieve RAF, Pesonen LJ (1996) Terrestrial impact craters: their spatial and temporal distribution and impacting bodies. Earth, Moon and Planets 72: 357–376

    Article  ISI  Google Scholar 

  • Gudlaugsson ST (1993) Large impact crater in the Barents Sea. Geology 21: 291–294

    Article  ISI  Google Scholar 

  • Gudlaugsson ST, Faleide JI, Johansen SE, Breivik AJ (1998) Late Paleozoic structural development of the south-western Barents Sea. Marine and Petroleum Geology 15: 73–102

    Article  ISI  Google Scholar 

  • Hayhurst CJ, Ranson HJ, Gardner DJ, Birnbaum NK (1995) Modelling of microparticle hypervelocity oblique impacts on thick targets. International Journal of Impact Engineering 17: 375–386

    ISI  Google Scholar 

  • Ivanov BA, Artemieva NA (2002) Numerical modelling of the formation of large impact craters. In: Koeberl C, MacLeod KG (eds) Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America Special Paper 356: 619–630

    Google Scholar 

  • Izett GA, Cobban WA, Obradovich JD, Kunk MD (1993) The Manson impact structure: 40Ar/39Ar age and its distal impact ejecta in the Pierre Shale in southeastern South Dakota. Science 262: 729–732

    ISI  Google Scholar 

  • Lawver LA, Gahagan LM, Campbell DA, Brozena JM, Childers V (1999) Mid-Jurassic to Recent tectonic evolution of the Arctic region (Powerpoint animation, using the PLATES’ animation software) [abs]. In: Lawver LA, Brozena JM, Kovacs LC, Childers V Compilations in the Canada Basin, Aerogeophysical Anomalies. Eos, Transactions, American Geophysical Union, Fall Meeting 1999, San Francisco, 80(46): 1000

    Google Scholar 

  • Melosh HJ (1989) Impact cratering-A geologic process. Oxford University Press, New York: 245

    Google Scholar 

  • Morgan J, Warner M (1999) Chicxulub: The third dimension of a multi-ring impact basin. Geology 27: 407–410

    Article  ISI  Google Scholar 

  • O’Keefe JD, Ahrens TJ (1985) Sampling of planetary material by oblique impact jet entrainment [abs]. Lunar and Planetary Science XVI (Lunar and Planetary Institute, Houston, Texas): 629–630

    Google Scholar 

  • Pierazzo E, Melosh HJ (1999) Hydrocode modeling of Chicxulub as an oblique impact event. Earth and Planetary Science Letters 165: 163–176

    Article  ISI  Google Scholar 

  • Pierazzo E, Melosh HJ (2000) Understanding oblique impacts from experiments, observations, and modeling. Annual Reviews of Earth and Planetary Sciences 28: 141–167

    Google Scholar 

  • Pilkington M, Grieve RAF (1992) The geophysical signature of terrestrial impact craters. Reviews of Geophysics 30: 161–181

    ISI  Google Scholar 

  • Poag CW, Poppe LJ (1998) The Toms Canyon structure, New Jersey outer continental shelf: A possible late Eocene impact crater. Marine Geology 145: 23–60

    Article  ISI  Google Scholar 

  • Sandbakken PT (2002) A geological investigation of the Mjølnir Crater core (7329/03-U-01), with emphasis on shock metamorphosed quartz. Masters Thesis, University of Oslo: 142

    Google Scholar 

  • Schultz PH (1992) Atmospheric effects on ejecta emplacement and crater formation on Venus from Magellan. Journal of Geophysical Research 97: 16,183-16,248.

    Google Scholar 

  • Schultz PH (1996) Effect of impact angle on vaporization. Journal of Geophysical Research 100: 21,117-21,135.

    Google Scholar 

  • Schultz PH, Anderson RR (1996) Asymmetry of the Manson impact structure: Evidence for impact angle and direction. In: Koeberl C, Anderson RR (eds) The Manson Impact Structure, Iowa: Anatomy of an Impact Crater. Geological Society of America Special Paper 302: 397–417

    Google Scholar 

  • Schultz PH, D’Hondt S (1996) Cretaceous-Tertiary (Chicxulub) impact angle and its consequences. Geology 24: 963–967

    Article  ISI  Google Scholar 

  • Schultz PH, Gault DE (1990) Prolonged global catastrophes from oblique impacts. In: Sharpton VL, Ward PD (eds) Global catastrophes in earth history; An interdisciplinary conference on impacts, volcanism and mass mortality. Geological Society of America Special Paper 247: 239–261

    Google Scholar 

  • Schultz PH, Gault DE (1992) Recognizing impact signatures in the planetary record [abs]. International Conference on Large Meteorite Impacts and Planetary Evolution (Sudbury, Canada), LPI (Lunar and Planetary Institute, Houston, Texas) Contribution 790: 64–65

    Google Scholar 

  • Shoemaker EM (1962) Interpretation of lunar craters. In: Kopal Z (ed) Physics and Astronomy of the Moon. Academic Press, New York, pp 283–351

    Google Scholar 

  • Shoemaker EM, Wolfe RF, Shoemaker CS (1990) Asteroid and comet flux in the neighborhood of Earth. In: Sharpton VL, Ward PD (eds) Global Catastrophes in Earth History; An interdisciplinary conference on impacts, volcanism and mass mortality. Geological Society of America Special Paper 247: 155–170

    Google Scholar 

  • Shuvalov V, Dypvik H, Tsikalas F (2002) Numerical simulations of the Mjølnir marine impact crater. Journal of Geophysical Research (Planets) 107: d.o.i: 10.1029/2001JE001698

    Google Scholar 

  • Smelror M, Kelly SRA, Dypvik H, Mørk A, Nagy J, Tsikalas F (2001) Mjølnir (Barents Sea) meteorite impact ejecta offers a Volgian-Ryazanian boundary marker. Newsletter on Stratigraphy 38: 129–140

    Google Scholar 

  • Spudis PD (1993) The geology of multi-ring impact basins. Cambridge, United Kingdom, Cambridge University Press, 263 pp

    Google Scholar 

  • Sugita S, Schultz PH (2002) Initiation of run-out flows on Venus by oblique impacts. Icarus 155: 265–284

    Article  ISI  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI (1998a) The anatomy of a buried complex impact structure: the Mjølnir Structure, Barents Sea. Journal of Geophysical Research 103: 30,469-30,484

    Article  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI (1998b) Collapse, infilling, and post-impact deformation at the Mjølnir impact structure, Barents Sea. Geological Society of America Bulletin 110: 537–552

    Article  ISI  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Eldholm O, Faleide JI (1998c) Integrated geophysical analysis supporting the impact origin of the Mjølnir Structure, Barents Sea. Tectonophysics 289: 257–280

    Article  ISI  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI, Eldholm O (1999) Mjölnir Structure, Barents Sea: a marine impact crater laboratory. In: Dressler B, Sharpton VL (eds) Large Meteorite Impacts and Planetary Evolution II. Geological Society of America Special Paper 339: 193–204

    Google Scholar 

  • Tsikalas F, Faleide JI, Eldholm O, Dypvik, H (2002a) Seismic correlation of the Mjølnir marine impact crater to shallow boreholes. In: Plado J, Pesonen LJ (eds) Impacts in Precambrian Shields, Impact Studies vol. 2, Springer Verlag, Berlin-Heidelberg, pp 307–321

    Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI, Eldholm O (2002b) The Mjølnir marine impact crater porosity anomaly. Deep-Sea Research Part II 49: 1103–1120

    ISI  Google Scholar 

  • Ward SN (2001) Landslide tsunami. Journal of Geophysical Research 106: 11,201-11,215

    Article  Google Scholar 

  • Ward SN, Asphaug E (2002) Impact tsunami-Eltanin. Deep-Sea Research Part II 49: 1073–1079

    Article  ISI  Google Scholar 

  • Worsley D, Johansen R, Kristensen SE (1988) The Mesozoic and Cenozoic succession of Tromsøflaket. In: Dalland A, Worsley D, Ofstad K (eds) A lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore mid-and northern Norway. Norwegian Petroleum Directorate Bulletin No. 4, 42–65

    Google Scholar 

  • Zuber M, Smith DE, Lemoine FG, Neumann GA (1995) The shape and internal structure of the Moon from the Clementine Mission. Science 266: 1839–1843

    ISI  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsikalas, F. (2005). Mjølnir Crater as a Result of Oblique Impact: Asymmetry Evidence Constrains Impact Direction and Angle. In: Koeberl, C., Henkel, H. (eds) Impact Tectonics. Impact Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27548-7_10

Download citation

Publish with us

Policies and ethics