Skip to main content

Part of the book series: Springer Praxis Books ((GEOPHYS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.8 References

  • Abramento, M. and Carvalho, C.S. (1989) Geotechnical parameters for the study of natural slope instabilization at Serra do Mar, Brazil. In: Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio De Janeiro, 1989 (pp. 1599–1602). A.A. Balkema, Rotterdam.

    Google Scholar 

  • Anderson, M.G. and Howes, S. (1985) Development and application of a combined soil water-slope stability model. Quarterly Journal of Engineering Geology, 18, 225–236.

    Article  Google Scholar 

  • Baum, R.L. and Reid, M.E. (1995) Geology, hydrology, and mechanics of a slow-moving, clay-rich landslide, Honolulu, Hawaii. GSA Reviews in Engineering Geology, X, 79–105.

    Google Scholar 

  • Baum, R.L., Savage, W.Z., and Godt, J.W. (2002) TRIGRS A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis (USGS Open-File Report 02-0424, 27 pp., 2 Appendices). US Geological Survey, Reston, VA.

    Google Scholar 

  • Bishop, A.W. (1959) The principle of effective stress. Teknisk Ukeblad, 39, 859–863.

    Google Scholar 

  • Bishop, A.W. and Henkel, D.J. (1957) The Triaxial Test (228 pp.). Edward Arnold, London.

    Google Scholar 

  • Bishop, A.W. and Morgenstern, N.R. (1960) Stability coefficients for earth slopes. Geotechnique, 10, 129–150.

    Google Scholar 

  • Bishop, A.W., Alpan, I., Blight, G.E., and Donald, I.B. (1961) Factors controlling the strength of partly saturated cohesive soils. In: Research Conference on Shear Strength of Cohesive Soils, Boulder, Colorado, June 1960 (pp. 503–532). American Society of Civil Engineers, New York.

    Google Scholar 

  • Campbell, R.H. (1975) Soil Slips, Debris Flows, and Rainstorms in the Santa Monica Mountains and Vicinity, Southern California (USGS Professional Paper 851, 51 pp.). US Geological Survey, Reston, VA.

    Google Scholar 

  • Carrara, A. and Guzetti, F. (1999) Use of GIS technology in the prediction and monitoring of landslide hazard. Natural Hazards, 20, 117–135.

    Article  Google Scholar 

  • Carslaw, H.S. and Jaeger, J.C. (1959) Conduction of Heat in Solids (510 pp.). Oxford University Press, New York.

    Google Scholar 

  • Coe, J.A., Michael, J.A., Crovelli, R.A., and Savage, W.Z. (2000) Preliminary Map Showing Landslide Densities, Mean Recurrence Intervals, and Exceedance Probabilities as Determined from Historic Records, Seattle, Washington (USGS Open-File Report 00-303, 32 pp.). US Geological Survey, Reston, VA.

    Google Scholar 

  • Coe, J.A., Michael, J.A., Crovelli, R.A., and Savage, W.Z. (2004) Probabilistic assessment of precipitation-triggered landslides using historic records of landslide occurrence, Seattle, Washington. Environmental and Engineering Geoscience, X, 103–122.

    Article  Google Scholar 

  • Dietrich, W.E., Bellugi, D., and Real de Asua, R. (2001) Validation of the shallow landslide model, SHALSTAB, for forest management. Water Science and Application, 2, 195–227.

    Google Scholar 

  • Endo, T. and Tsuruta, T. (1969) Effects of trees roots upon the shearing strength of soils. In: 18th Annual Report of the Hokkaido Branch, Government Forest Experimental Station. Tokyo (pp. 167–179). Forest Experiment Station, Saporo, Japan [in Japaneese].

    Google Scholar 

  • Escario, V, Juca, J.F.T., and Coppe, M.S. (1989) Strength and deformation of partly saturated soils. In: Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio De Janeiro, 1989 (pp. 43–46). A.A. Balkema, Rotterdam.

    Google Scholar 

  • Fleming, R.W., Ellen, S.D., and Algus, M.A. (1989) Transformation of dilative and contractive landslide debris into debris flows: An example from Marin County, California. Engineering Geology, 27, 201–223.

    Article  Google Scholar 

  • Fredlund, D.G. and Rahardjo, H. (1993) Soil Mechanics for Unsaturated Soils (517 pp.). John Wiley & Sons, New York.

    Google Scholar 

  • Fredlund, D.G., Morgenstern, N.R., and Widger, R.A. (1978) Shear strength of unsaturated soils. Canadian Geotechnical Journal, 15, 313–321.

    Google Scholar 

  • Freeze, R.A. (1969) The mechanism of natural ground-water recharge and discharge: 1. One-dimensional, vertical, unsteady, unsaturated flow above a recharging or discharging ground-water flow system. Water Resources Research, 5, 153–171.

    Article  Google Scholar 

  • Freeze, R.A. and Cherry, J.A. (1979) Groundwater (604 pp.). Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P. (1999) Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, central Italy. Geomorphology, 31, 181–216.

    Article  Google Scholar 

  • Hammond, C.J., Hall, D.E., Miller, S.M., and Swetik, P.G. (1992a) Level I Stability Analysis (LISA) Documentation for Version 2.0 (USDA Forest Service General Tech. Report INT-25). US Department of Agriculture, Washington, DC.

    Google Scholar 

  • Hammond, C.J., Prellwitz, R.W., and Miller, S.M. (1992b) Landslide hazard assessment using Monte-Carlo simulation. In: D.H. Bell (ed.), Proceedings of the International Symposium on Landslides (Vol. 6, pp. 959–964). A.A. Balkema, Rotterdam.

    Google Scholar 

  • Havercamp, R., Vauclin, M., Touma, J., Wierenga, P.J., and Vachaud, G. (1971) A comparison of numerical simulation models for one-dimensional infiltration. Soil Science Society of America Journal, 41, 285–294.

    Article  Google Scholar 

  • Hillel, D. (1982) Introduction to Soil Physics (364 pp.). Academic Press, San Diego, CA.

    Google Scholar 

  • Hsieh, P.A., Wingle, W., and Healy, R.W. (2000) VS2DI: A Graphical Software Package for Simulating Fluid Flow and Solute or Energy Transport in Variably Saturated Porous Media (USGS Water-Resources Investigations Report 99-4130, 16 pp.). US Geological Survey, Reston, VA.

    Google Scholar 

  • Iverson, R.M. (1990) Groundwater flow fields in infinite slopes. Géotechnique, 40, 139–143.

    Article  Google Scholar 

  • Iverson, R.M. (2000) Landslide triggering by rain infiltration. Water Resources Research, 36, 1897–1910.

    Article  Google Scholar 

  • Iverson R.M., and Major, J.J. (1986) Groundwater seepage vectors and the potential for hillslope failure and debris flow mobilization. Water Resources Research, 22, 1543–1548.

    Google Scholar 

  • Iverson R.M. and Reid, M.E. (1992) Gravity-driven groundwater flow and slope failure potential: 1. Elastic effective-stress model. Water Resources Research, 28, 925–938.

    Article  Google Scholar 

  • Iverson, R.M., Reid, M.E., Iverson, N.R., LaHusen, R.G., Logan, M., Mann, J.E., and Brien, D.L. (2000) Acute sensitivity of landslide rates to initial porosity. Science, 290, 513–516.

    Article  Google Scholar 

  • Jibson, R.W., Harp, E.L., and Michael, J.A. (2000) A method for producing digital probabilistic landslide hazard maps. Engineering Geology, 58, 271–289.

    Article  Google Scholar 

  • Lambe, T.W. and Whitman, R.V. (1969) Soil Mechanics (553 pp.). John Wiley & Sons, New York.

    Google Scholar 

  • Montgomery, D.R., and Dietrich, W.E. (1994) A physically-based model for the topographic control on shallow landsliding. Water Resources Research, 30, 1153–1171.

    Article  Google Scholar 

  • Moore, P.L. and Iverson, N.R. (2002) Slow episodic shear of granular materials regulated by dilatant strengthening. Geology, 30(9), 843–846.

    Article  Google Scholar 

  • Morrissey, M.M, Wieczorek, G.F., and Morgan, B.A. (2001) Regional Application of a Transient Hazard Model for Predicting Initiation of Debris Flows in Madison County, Virginia (USGS Open-File Report 01-481, 7 pp.). US Geological Survey, Reston, VA.

    Google Scholar 

  • O'Loughlin, C.L. (1974) The effect of timber removal on the stability of forest soils. Journal of Hydrology (N.Z.), 13, 121–134.

    Google Scholar 

  • Pack, R.T., Tarboton, D.G., and Goodwin, C.N. (1998) The SINMAP approach to terrain stability mapping. Proceedings of 8th Congress of the Association of Engineering Geology (Vol. 2, pp. 1157–1165). American Society of Civil Engineers, New York.

    Google Scholar 

  • Riestenberg, M.M. (1994) Anchoring of Thin Colluvium by Roots of Sugar Maple and White Ash on Hillslopes in Cincinnati (USGS Bulletin 2059-E). US Geological Survey, Reston, VA.

    Google Scholar 

  • Rubin, J. and Steinhardt, R. (1963) Soil water relations during rainfall infiltration: 1. Theory. Soil Science Society Proceedings, 27, 246–251.

    Article  Google Scholar 

  • Savage, W.Z., Godt, J.W., and Baum, R.L. (2003) A model for spatially and temporally distributed shallow landslide initiation by rainfall infiltration. Proceedings of the 3rd International Conference on Debris Flow Hazards Mitigation. Mechanics, Prediction, and Assessment, September 10–12, 2003, Davos, Switzerland (pp. 179–187). Millpress, Rotterdam.

    Google Scholar 

  • Schmidt, K.M., Roering, J.J., Stock, J.D., Dietrich, W.E., Montgomery, D.R., and Schaub, T. (2001) The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Canadian Geotechnical Journal, 38, 995–1024.

    Article  Google Scholar 

  • Simunek, J., Huang, K., and van Genuchten, M.Th. (1998) The HYDRUS Code for Simulating 1-dimensional Movement of Water, Heat and Multiple Solutes in Variably Saturated Media, Version 6.0 (US Salinity Laboratory Research Report No. 144). US Salinity Laboratory, Riverside, California.

    Google Scholar 

  • Stephens, D.B. (1996) Vadose Zone: Hydrology (347 pp.). Lewis, Boca Raton, FL.

    Google Scholar 

  • Terzaghi, K. (1943) Theoretical Soil Mechanics (510 pp.). John Wiley & Sons, New York.

    Google Scholar 

  • Voss, C.I. (1984) A Finite-element Simulation Modelfor Saturated-unsaturated, Fluid-density-dependent Ground-water Flow with Energy Transport or Chemically-reactive Single-species Solute Transport (USGS Water-Resources Investigations Report 84-4369, 409 pp.). US Geological Survey, Reston, VA.

    Google Scholar 

  • Waldron, L.J. (1977) The shear resistance of root-permeated homogeneous and stratified soil. Soil Science Society of America Journal, 41, 843–849.

    Article  Google Scholar 

  • Wilkinson, P.L., Anderson, M.G., and Lloyd, D.M. (2002) An integrated hydrological model for rain-induced landslide prediction. Earth Surface Processes and Landforms, 27, 1285–1297.

    Article  Google Scholar 

  • Wolle, C.M., and Hachich, W. (1989) Rain-induced landslides in southeastern Brazil. In: Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, 1989 (pp. 1639–1642). A.A. Balkema, Rotterdam.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Praxis. Springer Berlin Heidelberg

About this chapter

Cite this chapter

Savage, W., Baum, R. (2005). Instability of steep slopes. In: Debris-flow Hazards and Related Phenomena. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27129-5_4

Download citation

Publish with us

Policies and ethics