Skip to main content

Random Dynamical Systems Methods in Ship Stability: A Case Study

  • Chapter
Interacting Stochastic Systems

Summary

We first explain how to derive the archetypal equation describing the roll motion of a ship in random seaway from first principles. We then present an analytic and numerical case study of two simple nonlinear models of the roll motion using concepts of the theory of random dynamical systems. In contrast to the case of periodic excitation, the incorporation of noise leads to scenarios in which capsizing of the ship (i.e. the disappearance of the random attractor) is not preceded by a series of bifurcations, but happens without announcement “out of the blue sky”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Arnold. Random dynamical systems. Springer-Verlag, Berlin Heidelberg New York, 1998.

    MATH  Google Scholar 

  2. L. Arnold, I. Chueshov, and G. Ochs. Stability and capsizing of ships in random sea — a survey. Report No. 464, Institut für dynamische Systeme, Universität Bremen, June 2003.

    Google Scholar 

  3. P. Ashwin and G. Ochs. Convergence to local random attractors. Dynamical Systems, to appear, 2003.

    Google Scholar 

  4. H. Crauel. Random dynamical systems, PhD thesis, Bremen, 1987.

    Google Scholar 

  5. O._M. Faltinsen. Sea loads on ships and offshore structures. Cambridge University Press, 1998.

    Google Scholar 

  6. Institute of London Underwriters. Hull casualty statistics. IUMI Conf. Paris. The Institute of London Underwriters, 1997.

    Google Scholar 

  7. International Maritime Organization. Code on intact stability for all types of ships covered by IMO instruments. Resolution A.749(18). IMO, London, 1995.

    Google Scholar 

  8. F. John. On the motion of floating bodies. I. Communications on Pure and Applied Mathematics, 2:13–57, 1949.

    MATH  MathSciNet  Google Scholar 

  9. E. Kreuzer and M. Wendt. Ship capsizing analysis using advanced hydrodynamic modelling. Phil. Trans. R. Soc. Lond. A, 358:1835–1851, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Mischaikow and G. Ochs. A Conley index for random homeomorphisms. Preprint, 2002.

    Google Scholar 

  11. N._K. Moshchuk, R. A. Ibrahim, R. Z. Khasminskii, and P. L. Chow. Asymptotic expansion of ship capsizing in random sea waves — I. First-order approximation. Int. J. Non-Linear Mechanics, 30:727–740, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  12. N._K. Moshchuk, R. A. Ibrahim, R. Z. Khasminskii, and P. L. Chow. Asymptotic expansion of ship capsizing in random sea waves — II. Second-order approximation. Int. J. Non-Linear Mechanics, 30:741–757, 1995.

    Article  MathSciNet  Google Scholar 

  13. M. Neves, N. Pérez, and L. Valerio. Stability of small fishing vessels in longitudinal waves. Ocean Engineering, 26:1389–1419, 1999.

    Article  Google Scholar 

  14. G. Ochs. Random attractors: Robustness, numerics and chaotic dynamics. In B. Fiedler (ed.): Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, pages 1–30, 2001

    Google Scholar 

  15. W. G. Price and R. E. Bishop. Probabilistic theory of ship dynamics. Chapman and Hall, London, 1974.

    MATH  Google Scholar 

  16. R. C. T. Rainey and J. M. T. Thompson. The transient capsize diagram — a new method of quantifying stability of waves. Journal of Ship Research, 35:58–62, 1991.

    Google Scholar 

  17. J. B. Roberts and M. Vasta. Markov modelling and stochastic identification for nonlinear ship rolling in random waves. Phil. Trans. R. Soc. Lond. A, 358:1917–1941, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  18. K. J. Spyrou and J. M. T. Thompson. The nonlinear dynamics of ship motions: a field overview and some recent developments. Phil. Trans. R. Soc. Lond. A, 358:1735–1760, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  19. K. J. Spyrou and J. M. T. Thompson, editors. The nonlinear dynamics of ships, volume 358 of Phil. Trans. Royal Soc. London, Series A (Theme Issue). The Royal Society, 2000.

    Google Scholar 

  20. J. M. T. Thompson. Designing against capsize in beam seas: recent advances and new insights. ASME Appl. Mech. Rev., 50:307–325, 1997.

    Article  Google Scholar 

  21. J. M. T. Thompson, R. C. T. Rainey, and M. S. Soliman. Mechanics of ship capsize under direct and parametric wave excitation. Phil. Trans. R. Soc. Lond. A, 338:471–490, 1992.

    MATH  Google Scholar 

  22. M. Wendt. Zur nichtlinearen Dynamik des Kenterns intakter Schiffe im Seegang. VDI Verlag, Düsseldorf, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arnold, L., Chueshov, I., Ochs, G. (2005). Random Dynamical Systems Methods in Ship Stability: A Case Study. In: Deuschel, JD., Greven, A. (eds) Interacting Stochastic Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27110-4_19

Download citation

Publish with us

Policies and ethics