Skip to main content

Applications of Heated Atomic Force Microscope Cantilevers

  • Chapter
Applied Scanning Probe Methods IV

Part of the book series: NanoScience and Technology ((NANO))

30.5 Summary and Conclusions

Heated AFM cantilevers have been used for thermal property measurement, microsystems actuation, and thermal processing, but applications using these capabilities have only begun to realize their full potential. Many physical, chemical, and biological phenomena depend upon temperature, and the most interesting measurements are likely yet to be demonstrated. For example, few precision force measurements have been made with heated AFM cantilevers, even though they are outstanding force transducers. Additionally, no investigations that we are aware of have explored the effects of heated probes as highly localized heat sources in biological or biochemical systems.

The most pressing unresolved issue in all of these applications, and for future applications, is the lack of precision quantitative measurements with well-understood uncertainty. The overall impact of heated AFM cantilever probes would be significantly enhanced by further quantitative investigation of heat flow in AFM probes, high-resolution temperature calibration, temperature determination at tip-substrate contacts, and possibly standardization of these across heated AFM cantilever probe types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pinnaduwage LA, Gehl A, Hedden DL, Muralidharan G, Thundat T, Lareau RT, Sulchek T, Manning L, Rogers B, Jones M, Adams JD (2003) Nature 425:474

    Article  CAS  Google Scholar 

  2. Berger R, Lang H, Gerber C, Gimzewski J, Fabian J, Scandella L, Meyer E, Guntherodt H (1998) Chem Phys Lett 294:363

    Article  CAS  Google Scholar 

  3. Passian A, Warmack RJ, Ferrell TL, Thundat T (2003) Phys Rev Lett 90:124503

    Article  CAS  Google Scholar 

  4. Passian A, Warmack RJ, Wig A, Farahi RH, Meriaudeau F, Ferrell TL, Thundat T (2003) Ultramicroscopy 97:401

    Article  CAS  Google Scholar 

  5. Passian A, Wig A, Meriaudeau F, Ferrell TL, Thundat T (2002) J Appl Phys 92:6326

    Article  CAS  Google Scholar 

  6. Lereu AL, Passian A, Warmack RJ, Ferrell TL, Thundat T (2004) Appl Phys Lett 84:1013

    Article  CAS  Google Scholar 

  7. Majumdar A (1999) Annu Rev Mater Sci 29:505

    Article  CAS  Google Scholar 

  8. Pylkki RJ, Moyer PJ, West PE (1994) Jpn J Appl Phys 33:3785

    Article  CAS  Google Scholar 

  9. Hammiche A, Pollock HM, Song M, Hourston DJ (1996) Meas Sci Technol 7:142

    Article  CAS  Google Scholar 

  10. Hammiche A, Bozec L, Conroy M, Pollock HM, Mills G, Weaver JMR, Price DM, Reading M, Hourston DJ, Song M (2000) J Vac Sci Technol B 18:1322

    Article  CAS  Google Scholar 

  11. Edinger K, Gotszalk T, Rangelow IW (2001) J Vac Sci Technol B 19:2856

    Article  CAS  Google Scholar 

  12. Li M-H, Gianchandani YB (2003) Sens Actuators A 104:236

    Article  CAS  Google Scholar 

  13. Li M-H, Gianchandani YB (2000) J Vac Sci Technol B 18:3600

    Article  CAS  Google Scholar 

  14. Hammiche A, Hourston DJ, Pollock HM, Reading M, Song M (1996) J Vac Sci Technol B 14:1486

    Article  CAS  Google Scholar 

  15. Nonnenmacher M, Wickramasinghe HK (1992) Appl Phys Lett 61:168

    Article  CAS  Google Scholar 

  16. Blanco C, Appleyard SP, Rand B (2002) J Microsc 205:21

    Article  CAS  Google Scholar 

  17. Lee J-H, Gianchandani YB (2004) Rev Sci Instrum 75:1222

    Article  CAS  Google Scholar 

  18. Oesterschulze E, Stopka M (1996) Microelectron Eng 31:241

    Article  CAS  Google Scholar 

  19. Varesi J, Majumdar A (1998) Appl Phys Lett 72:37

    Article  CAS  Google Scholar 

  20. Gomes S, Thannoy N, Grossel P, Depasse F, Bainier C, Charraut D (2001) Int J Thermal Sci 40:949

    Article  Google Scholar 

  21. Lefevre S, Volz S, Saulnier J-B, Fuentes C (2003) Rev Sci Instrum 74:2418

    Article  CAS  Google Scholar 

  22. Depasse F, Grossel P, Gomes S (2003) J Phys D: Appl Phys 36:204

    Article  CAS  Google Scholar 

  23. Arai T, Tomitori M (1998) Appl Phys A 66:S319

    Article  CAS  Google Scholar 

  24. Arai T, Tomitori M (1999) Appl Surf Sci 144–145:501

    Article  Google Scholar 

  25. Tomitori M, Arai T (1999) Appl Surf Sci 140:432

    Article  CAS  Google Scholar 

  26. Akiyama T, Staufer U, de Rooij NF, Lange D, Hagleitner C, Brand O, Baltes H, Tonin A, Hidber HR (2000) J Vac Sci Technol B 18:2669

    Article  CAS  Google Scholar 

  27. Akiyama T, Staufer U, de Rooij NF (2002) Rev Sci Instrum 73:2643

    Article  CAS  Google Scholar 

  28. Franks W, Lange D, Lee S, Hierlemann A, Spencer N, Baltes H (2002) Ultramicroscopy 91:21

    Article  CAS  Google Scholar 

  29. Sulchek T, Minne SC, Adams JD, Fletcher DA, Atalar A, Quate CF, Adderton DM (1999) Appl Phys Lett 75:1637

    Article  CAS  Google Scholar 

  30. Volden T, Zimmermann M, Lange D, Brand O, Baltes H (2004) Sens Actuators A 115:516

    Article  CAS  Google Scholar 

  31. Pedrak R, Ivanov T, Ivanova K, Gotszalk T, Abedinov N, Rangelow IW, Edinger K, Tomerov E, Schenkel T, Hudek P (2003) J Vac Sci Technol B 21:3102

    Article  CAS  Google Scholar 

  32. Manalis SR, Minne SC, Atalar A, Quate CF (1996) Rev Sci Instrum 67:3294

    Article  CAS  Google Scholar 

  33. Williams CC, Wickramasinghe HK (1986) Appl Phys Lett 49:1587

    Article  Google Scholar 

  34. Binnig G, Despont M, Drechsler U, Haberle W, Lutwyche M, Vettiger P, Mamin HJ, Chui BW, Kenny TW (1999) Appl Phys Lett 74:1329

    Article  CAS  Google Scholar 

  35. Lutwyche MI, Despont M, Drechsler U, Durig U, Haberle W, Rothuizen H, Stutz R, Widmer R, Binnig GK, Vettiger P (2000) Appl Phys Lett 77:3299

    Article  CAS  Google Scholar 

  36. King WP, Kenny TW, Goodson KE (2004) Appl Phys Lett 85:2086

    Article  CAS  Google Scholar 

  37. King WP, Kenny TW, Goodson KE, Cross G, Despont M, Durig U, Rothuizen H, Binnig GK, Vettiger P (2001) Appl Phys Lett 78:1300

    Article  CAS  Google Scholar 

  38. King WP, Kenny TW, Goodson KE, Cross GLW, Despont M, Durig UT, Rothuizen H, Binnig G, Vettiger P (2002) J Microelectromech Syst 11:765

    Article  CAS  Google Scholar 

  39. Hammiche A, Reading M, Pollock HM, Song M, Hourston DJ (1996) Rev Scientific Instruments 67:4268

    Article  CAS  Google Scholar 

  40. Berger R, Gerber C, Gimzewski J, Meyer E, Guntherodt H (1996) Appl Phys Lett 69:40

    Article  CAS  Google Scholar 

  41. Nakagawa Y, Schafer R, Guntherodt H-J (1998) Appl Phys Lett 73:2296

    Article  CAS  Google Scholar 

  42. Nakagawa Y, Schafer R (1999) Angew Chem Int Ed 38:1083

    Article  CAS  Google Scholar 

  43. Abedinov N, Grabiec P, Gotszalk T, Ivanov T, Voigt J, Rangelow IW (2001) J Vac Sci Technol A — Vac Surf Films 19:2884

    Article  CAS  Google Scholar 

  44. Blanco C, Lu S, Appleyard SP, Rand B (2003) Carbon 41:165

    Article  CAS  Google Scholar 

  45. Fabian J-H, Scandella L, Fuhrmann H, Berger R, Mezzacasa T, Musil C, Gobrecht J, Meyer E (2000) Ultramicroscopy 82:69

    Article  CAS  Google Scholar 

  46. Ono T, Esashi M (2004) Meas Sci Technol 15:1977

    Article  CAS  Google Scholar 

  47. Hierlemann A, Lange D, Hagleitner C, Kerness N, Koll A, Brand O, Baltes H (2000) Sens Actuators B 70:2

    Article  Google Scholar 

  48. Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N, Brand O, Baltes H (2001) Nature 414:293

    Article  CAS  Google Scholar 

  49. Grigorov AV, Davis ZJ, Rasmussen P, Boisen A (2004) Microelectron Eng 73–74:881

    Article  Google Scholar 

  50. Lavrik NV, Sepaniak MJ, Datskos PG (2004) Rev Sci Instrum 75:2229

    Article  CAS  Google Scholar 

  51. Lee DW, Despont M, Drechsler U, Gerber C, Vettiger P, Wetzel A, Bennewitz R, Meyer E (2003) Microelectron Eng 67–68:635

    Article  CAS  Google Scholar 

  52. Lee D, Wetzel A, Bennewitz R, Meyer E, Despont M, Vettiger P, Gerber C (2004) Appl Phys Lett 84:1558

    Article  CAS  Google Scholar 

  53. Pinnaduwage LA, Wig A, Hedden DL, Gehl A, Yi D, Thundat T, Lareau RT (2004) J Appl Phys 95:5871

    Article  CAS  Google Scholar 

  54. Pinnaduwage LA, Thundat T, Gehl A, Wilson SD, Hedden DL, Lareau RT (2004) Ultramicroscopy 100:211

    Article  CAS  Google Scholar 

  55. Ruigrok JJM, Coehoorn R, Cumpson SR, Kesteren HW (2000) J Appl Phys 87:5389

    Article  Google Scholar 

  56. Marrian CRK, Tennet DM (2003) J Vac Sci Technol A 21:S207

    Article  CAS  Google Scholar 

  57. Snow ES, Campbell PM (1995) Science 270:1639

    CAS  Google Scholar 

  58. Cooper EB, Manalis SR, Fang H, Dai H, Matsumoto K, Minne SC, Hunt T, Quate CF (1999) Appl Phys Lett 75:3566

    Article  CAS  Google Scholar 

  59. Wilder K, Quate C, Adderton D, Bernstein R, Elings V (1998) Appl Phys Lett 73:2527

    Article  CAS  Google Scholar 

  60. Eigler DM, Schweizer EK (1990) Nature 344:524

    Article  CAS  Google Scholar 

  61. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) Science 283:661

    Article  CAS  Google Scholar 

  62. Mamin HJ, Rugar D (1992) Appl Phys Lett 61:1003

    Article  CAS  Google Scholar 

  63. Ried RP, Mamin HJ, Terris BD, Fan LS, Rugar D (1997) J Microelectromech Syst 6:294

    Article  Google Scholar 

  64. Hoen S, Mamin HJ, Rugar D (1994) Appl Phys Lett 64:267

    Article  CAS  Google Scholar 

  65. Mamin HJ (1996) Appl Phys Lett 69:433

    Article  CAS  Google Scholar 

  66. Chui BW, Stowe TD, Ju YS, Goodson KE, Kenny TW, Mamin HJ, Terris BD, Ried RP (1998) J Microelectromech Syst 7:69

    Article  Google Scholar 

  67. Lee CS, Nam HJ, Kim YS, Jin WH, Cho SM, Bu JU (2003) Appl Phys Lett 83:4839

    Article  CAS  Google Scholar 

  68. Yang ZX, Li XX, Wang YL, Bao HF, Liu M (2004) Microelectron J 35:479

    Article  Google Scholar 

  69. Vettiger P, Cross G, Despont M, Drechsler U, Duerig U, Gotsmann B, Haberle W, Lantz MA, Rothuizen HE, Stutz R, Binnig GK (2002) IEEE Trans Nanotech 1:39

    Article  Google Scholar 

  70. Drechsler U, Burer N, Despont M, Durig U, Gotsmann B, Robin F, Vettiger P (2003) Microelectron Eng 67–8:397

    Article  CAS  Google Scholar 

  71. Pantazi A, Lantz MA, Cherubini G, Pozidis H, Eleftheriou E (2004) Nanotechnology 15:S612

    Article  Google Scholar 

  72. Vettiger P, Brugger J, Despont M, Drechsler U, Durig U, Haberle W, Lutwyche M, Rothuizen H, Stutz R, Widmer R, Binnig G (1999) Microelectron Eng 46:11

    Article  CAS  Google Scholar 

  73. Despont M, Brugger J, Drechsler U, Dürig U, Häberle W, Lutwyche M, Rothuizen H, Stutz R, Widmer R, Rohrer H, Binnig GK, Vettiger P (2000) Sens Actuators A 80:100

    Article  Google Scholar 

  74. Vettiger P, Despont M, Drechsler U, Durig U, Haberle W, Lutwyche MI, Rothuizen HE, Stutz R, Widmer R, Binnig GK (2000) IBM J Research and Development 44:323

    Article  CAS  Google Scholar 

  75. Eleftheriou E, Antonakopoulos T, Binnig GK, Cherubini G, Despont M, Dholakia A, Durig U, Lantz MA, Pozidis H, Rothuizen HE, Vettiger P (2003) IEEE Trans Magnetics 39:938

    Article  Google Scholar 

  76. Lantz MA, Gotsmann B, Durig UT, Vettiger P, Nakayama Y, Shimizu T, Tokumoto H (2003) Appl Phys Lett 83:1266

    Article  CAS  Google Scholar 

  77. Gotsmann B, Durig U (2004) Langmuir 20:1495

    Article  CAS  Google Scholar 

  78. Despont M, Drechsler U, Yu R, Pogge HB, Vettiger P (2004) J Microelectromech Syst 13:895

    Article  CAS  Google Scholar 

  79. Vettiger P, Binnig G (2003) Sci Am 288:46

    Article  Google Scholar 

  80. Schwartz PV (2002) Langmuir 18:4041

    Article  CAS  Google Scholar 

  81. Sheehan PE, Whitman LJ (2002) Phys Rev Lett 88:156104

    Article  CAS  Google Scholar 

  82. Rozhok S, Piner R, Mirkin CA (2003) J Phys Chem B 107:751

    Article  CAS  Google Scholar 

  83. Bullen D, Wang XF, Zou J, Chung SW, Mirkin CA, Liu C (2004) J Microelectromech Syst 13:594

    Article  CAS  Google Scholar 

  84. Bullen D, Chung SW, Wang XF, Zou J, Mirkin CA, Liu C (2004) Appl Phys Lett 84:789

    Article  CAS  Google Scholar 

  85. Zhang M, Bullen D, Chung SW, Hong S, Ryu KS, Fan ZF, Mirkin CA, Liu C (2002) Nanotechnology 13:212

    Article  CAS  Google Scholar 

  86. Sheehan PE, Whitman LJ, King WP, Nelson BA (2004) Appl Phys Lett 85:1589

    Article  CAS  Google Scholar 

  87. Chimmalgi A, Choi TY, Grigoropoulos CP, Komvopoulos K (2003) Appl Phys Lett 82:1146

    Article  CAS  Google Scholar 

  88. Vasilev C, Heinzelmann H, Reiter G (2004) J Polymer Sci: Part B: Polymer Phys 42:1312

    Article  CAS  Google Scholar 

  89. Basu AS, McNamara S, Gianchandani YB (2004) J Vac Sci Technol B 22:3217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nelson, B.A., King, W.P. (2006). Applications of Heated Atomic Force Microscope Cantilevers. In: Bhushan, B., Fuchs, H. (eds) Applied Scanning Probe Methods IV. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26914-2_8

Download citation

Publish with us

Policies and ethics