Skip to main content

Influence of Microorganisms on Phosphorus Bioavailability in Soils

  • Chapter

Part of the book series: Soil Biology ((SOILBIOL,volume 3))

6 Conclusions

Soil microorganisms, particularly the rhizosphere flora of higher plants, remarkably affect the phosphorus bioavailability in soils. Microbially derived carboxylic acids mobilize calcium phosphates as well as iron- and aluminum-bound phosphorus. Microbial mineralization of organic matter is essential for nutrient cycling in soils and phosphatases enhance the use of organic P compounds by higher plants. Plants, especially in nutrient-poor habitats like forest ecosystems, often depend on symbiotic relations with microorganisms like mycorrhizal fungi. However, rhizosphere flora also decomposes P-mobilizing substances derived from plant roots. Microorganisms can be powerful competitors for growth-limiting nutrients like P, but microbial turnover can also make P available for higher plants. The difficulty in quantifying all these complex and partially contrary processes is a substantial weak point in mathematical P-utilization models as well as in the use of P-mobilizing microbes as biofertilizers. The investigation of these complex effects with modern methods, which cover also the large majority of noncultivable microorganisms, is an important aim for further research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amellal N, Bartoli F, Villemin G, Talouizte A, Heulin T (1999) Effects of inoculation of EPS producing Pantoea agglomerans on wheat rhizosphere aggregation. Plant Soil 211:93–101

    Article  CAS  Google Scholar 

  • Bajpai PD, Sundara Rao WVB (1971) Phosphate solubilizing bacteria. Soil Sci Plant Nutr 17:41–53

    Google Scholar 

  • Banic S, Dey BK (1981) Phosphate-solubilizing microorganisms of a lateritic soil. I. Solubilization of inorganic phosphates and production of organic acids by microorganisms, isolated in sucrose calcium phosphate agar plates. Zentralbl Bakt Abt II 136:478–486

    Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability. Wiley, New York

    Google Scholar 

  • De Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate solubilizing rhizobacteria enhance the growth and yield but not the phosphorus uptake of canola. Biol Fertil Soil 24:358–364

    Google Scholar 

  • Deubel A, Gransee A, Merbach W (2000) Transformation of organic rhizodepositions by rhizosphere bacteria and its influence on the availability of tertiary calcium phosphate. J Plant Nutr Soil Sci 163:387–392

    Article  CAS  Google Scholar 

  • Deubel A, Narula N, Gransee A, Merbach W (2002) Einfluss einer Bakterieninokulation auf die N-und P-Ernährung junger Weizenpflanzen bei unterschiedlichen Düngungsstufen. In: Merbach W, Hütsch BW, Wittenmayer L, Augustin J (eds) Durchwurzelung, Rhizodeposition und Pflanzenverfügbarkeit von Nährstoffen und Schwermetallen. Teubner, Stuttgart, pp 31–35

    Google Scholar 

  • Dodor DE, Ali Tabatabai M (2003) Effect of cropping systems on phosphatases in soils. J Plant Nutr Soil Sci 166:7–13

    Article  CAS  Google Scholar 

  • Dye C (1995) Effect of citrate and tartrate on phosphate adsorption by amorphous ferric hydroxide. Fertil Res 40:129–134

    Article  Google Scholar 

  • El-Shatnawi MKJ, Makhadmeh IM (2001) Ecophysiology of the plant-rhizosphere system. J Agron Crop Sci 187:1–9

    Article  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244:221–230

    Article  CAS  Google Scholar 

  • Gaume A, Weidler PG, Frossard E (2000) Effects of maize root mucilage on phosphate adsorption and exchangeability on a synthetic ferrihydrite. Biol Fertil Soils 31:525–532

    Article  CAS  Google Scholar 

  • Gaume A, Mächler F, Frossard E (2001) Aluminium resistance in two cultivars of Zea mays L.: root exudation of organic acids and influence of phosphorus nutrition. Plant Soil 234:73–81

    Article  CAS  Google Scholar 

  • Geelhoed JS, van Riemsdijk WH, Findenegg GR (1999) Simulation of the effect of citrate exudation from roots on the plant availability of phosphate adsorbed on goethite. Eur J Soil Sci 50:379–390

    Article  CAS  Google Scholar 

  • Goenadi DH, Siswanto, Sugiarto Y (2000) Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus. Soil Sci Soc Am J 64:927–932

    CAS  Google Scholar 

  • Gransee A, Wittenmayer L (2000) Qualitative and quantitative analysis of water-soluble root exudates in relation to plant species and development. J Plant Nutr Soil Sci 163:381–385

    CAS  Google Scholar 

  • Gregory PJ, Hinsinger P (1999) New approaches to studying chemical and physical changes in the rhizosphere: an overview. Plant Soil 211: 1–9

    Article  CAS  Google Scholar 

  • Grimal JY, Frossard E, Morel JL (2001) Maize root mucilage decrease adsorption of phosphate on goethite. Biol Fertil Soils 33:226–230

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Naresh Kumar G, Parekh LJ (1998) Cloning of mineral phosphate solubilizing genes from Synechocystis PCC 6803. Curr Sci 74:1097–1099

    CAS  Google Scholar 

  • Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245: 83–93

    Article  CAS  Google Scholar 

  • Hayes JE, Simpson RJ, Richardson AE (2000) The growth and phosphorus utilization of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant Soil 220:165–174

    Article  CAS  Google Scholar 

  • He ZL, Bian W, Zhu J (2002) Screening and identification of microorganisms capable of utilizing phosphate adsorbed by goethite. Commun Soil Sci Plant Anal 33:647–663

    Article  CAS  Google Scholar 

  • Igual JM, Valverde A, Cervantes E, Velazquez E (2001) Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568

    Article  Google Scholar 

  • Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates — solubilization mechanisms. Soil Biol Biochem 27: 257–263

    CAS  Google Scholar 

  • Ishikawa S, Adu-Gyamfi JJ, Nakamura T, Yoshihara T, Watanabe T, Wagatsuma T (2002) Genotypic variability in phosphorus solubilizing activity of root exudates by pigeonpea grown in low-nutrient environments. Plant Soil 245:71–81

    Article  CAS  Google Scholar 

  • Johnson JF, Vance CP, Allan DL (1996) Phosphorus deficiency in Lupinus albus. Plant Physiol 112:31–41

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biol Biochem 30:995–1003

    Article  CAS  Google Scholar 

  • Kraffczyk I, Trolldenier G, Beringer H (1984) Soluble root exudates of maize: Influence of potassium supply and microorganisms. Soil Biol Biochem 16:315–322

    Article  CAS  Google Scholar 

  • Kucey RMN, Jenzen HH, Leggett ME (1989) Microbially mediated increases in plant available phosphorus. Adv Agron 42:199–228

    CAS  Google Scholar 

  • Lange Ness RL, Vlek PLG (2000) Mechanism of calcium and phosphate release from hydroxy-apatite by mycorrhizal hyphae. Soil Sci Am J 64: 949–955

    Google Scholar 

  • Martens DA, Frankenberger WT Jr (1991) Saccharide composition of exocellular polymers produced by soil microorganisms. Soil Biol Biochem 23:731–736

    Article  CAS  Google Scholar 

  • Martin FM, Perotto S, Bonfante P (2001) Mycorrhizal fungi: A fungal community at the interface between soil and roots. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Dekker, New York, pp 263–296

    Google Scholar 

  • Meharg AA, Killham K (1995) Loss of exudates from the roots of perennial ryegrass inoculated with a range of micro-organisms. Plant Soil 170: 345–349

    CAS  Google Scholar 

  • Mehta S, Nautyal CS (2001) An efficient method for qualitative screening of phosphate solubilizing bacteria. Curr Microbiol 43:51–56

    Article  CAS  Google Scholar 

  • Merbach W, Ruppel S (1992) Influence of microbial colonization on 14CO2 assimilation and amounts of root-borne 14C compounds in soil. Photosynthetica 26:551–554

    CAS  Google Scholar 

  • Merbach W, Mirus E, Knof G, Remus R, Ruppel S, Russow R, Gransee A, Schulze J (1999) Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. J Plant Nutr Soil Sci 162: 373–383

    Article  CAS  Google Scholar 

  • Narula N, Kumar V, Behl RK, Deubel A, Gransee A, Merbach W (2000) Effect of P-solubilizing Azotobacter chroococcum on N, P, K uptake in P-responsive wheat genotypes grown under greenhouse conditions. J Plant Nutr Soil Sci 163:393–398

    Article  CAS  Google Scholar 

  • Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211: 121–130

    Article  CAS  Google Scholar 

  • Oberson A, Friesen DK, Rao IM, Bühler S, Frossard E (2001) Phosphorus transformations in an oxisol under contrasting land-use systems: the role of the soil microbial biomass. Plant Soil 237:197–210

    Article  CAS  Google Scholar 

  • Oehl F, Oberson A, Sinaj S, Frossard E (2001) Organic phosphorus mineralization studies using isotopic dilution techniques. Soil Sci Soc Am J 65:780–787

    Article  CAS  Google Scholar 

  • Otani T, Ae N, Tanaka H (1996) Phosphorus (P) uptake mechanisms of crops grown in soils with low P status. II. Significance of organic acids in root exudates of pigeonpea. Soil Sci Plant Nutr 42:553–560

    CAS  Google Scholar 

  • Ozanne PG (1980) Phosphate nutrition of plants — a general treatise. In: Khasawneh FH, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. American Society of Agronomy, Madison, pp 559–590

    Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-Barrueco C, Martinez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    CAS  Google Scholar 

  • Ratti N, Kumar S, Verma HN, Gautam SP (2001) Improvement in bioavailability of tricalcium phosphate to Cymbopogon martinii var. motia by rhizobacteria, AMF and Azospirillum inoculation. Microbiol Res 156:145–149

    CAS  Google Scholar 

  • Read DB, Gregory PJ, Bell AE (1999) Physical properties of axenic maize root mucilage. Plant Soil 211:87–91

    Article  CAS  Google Scholar 

  • Read DB, Bengough AG, Gregory PJ, Crawford JW, Robinson D, Scrimgeour CM, Young IM, Zhang K, Zhang X (2003) Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil. New Phytol 157:315–326

    CAS  Google Scholar 

  • Reddy MS, Kumar S, Babita K, Reddy MS (2002) Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Bioresource Technol 84:187–189

    Article  CAS  Google Scholar 

  • Reyes I, Baziramakenga R, Bernier L, Antoun H (2001) Solubilization of phosphate rocks and minerals by a wild-type strain and two UV-induced mutants of Penicillium rugulosum. Soil Biol Biochem 33:1741–1747

    Article  CAS  Google Scholar 

  • Reyes I, Bernier L, Antoun H (2002) Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microb Ecol 44:39–48

    Article  CAS  Google Scholar 

  • Rodriguez H, Gonzalez T, Selman G (2000) Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J Biotechnol 84:155–161

    CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  CAS  Google Scholar 

  • Schilling G, Gransee A, Deubel A, Lezovic G, Ruppel S (1998) Phosphorus availability, root exudates, and microbial activity in the rhizosphere. J Plant Nutr Soil Sci 161:465–478

    CAS  Google Scholar 

  • Seeling B, Jungk A (1996) Utilization of organic phosphorus in calcium chloride extracts of soil by barley plants and hydrolysis by acid and alkaline phosphatases. Plant Soil 178:179–184

    Article  CAS  Google Scholar 

  • Staunton S, Leprince F (1996) Effect of pH and some organic anions on the solubility of soil phosphate: implications for P bioavailability. Eur J Soil Sci 47:231–239

    Article  CAS  Google Scholar 

  • Subba-Rao NS (1982) Advances in agricultural microbiology. Butterworth Scientific, London

    Google Scholar 

  • Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res 77:43–49

    Article  Google Scholar 

  • Tarafdar JC, Claasen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol Fertil Soils 5: 308–312

    Article  CAS  Google Scholar 

  • Tarafdar JC, Yadav RS, Meena SC (2001) Comparative efficiency of acid phosphatase originated from plant and fungal sources. J Plant Nutr Soil Sci 164:279–282

    Article  CAS  Google Scholar 

  • Tarafdar JC, Yadav RS, Niwas R (2002) Relative efficiency of fungal intra-and extracellular phosphatase and phytase. J Plant Nutr Soil Sci 165:17–19

    Article  CAS  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    Article  CAS  Google Scholar 

  • Villegas J, Fortin JA (2002) Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO3 as nitrogen source. Can J Bot 80: 571–576

    Article  CAS  Google Scholar 

  • Watt M, McCully ME, Jefree CE (1993) Plant and bacterial mucilages of the maize rhizosphere: comparison of their soil binding properties and histochemistry in a model system. Plant Soil 151:151–165

    Article  CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:100–153

    Google Scholar 

  • Yadaf RS, Tarafdar JC (2001) Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants. Biol Fertil Soils 34:140–143

    Google Scholar 

  • Zhang FS, Ma J, Cao YP (1997) Phosphorus deficiency enhances root exudation of low molecular weight organic acids and utilization of sparingly soluble inorganic phosphates by radish (Raphanus sativus L.) and rape (Brassica napus L.) plants. Plant Soil 196:261–264

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deubel, A., Merbach, W. (2005). Influence of Microorganisms on Phosphorus Bioavailability in Soils. In: Varma, A., Buscot, F. (eds) Microorganisms in Soils: Roles in Genesis and Functions. Soil Biology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26609-7_9

Download citation

Publish with us

Policies and ethics