Skip to main content

Prototypical examples of stratified shear flow

  • Chapter
Environmental Stratified Flows

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 479))

  • 717 Accesses

Abstract

Stratification effects on turbulence are examined in some fundamental shear flows. The differences between unbounded flows and those with walls are indicated. The role of the gradient Richardson number is assessed. Detailed results on turbulence energetics, transport and mixing are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • V. Armenio and S. Sarkar. An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech., 459:1–42, 2002.

    Article  MATH  ADS  Google Scholar 

  • V. Armenio and S. Sarkar. Mixing in a stably-stratified medium by horizontal shear near vertical walls. Theor. Comput. Fluid Dynamics, 17:331–349, 2004.

    Article  MATH  ADS  Google Scholar 

  • S. P. S. Arya. Buoyancy effects in a horizontal flat-plate boundary layer. J. Fluid Mech., 68:321, 1975.

    Article  ADS  Google Scholar 

  • S. Basak and S. Sarkar. Dynamics of a Stratified Shear Layer with Horizontal Shear. submitted, 2005.

    Google Scholar 

  • J. H. Bell and R. D. Mehta. Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J., 28:2034–2042, 1990.

    Article  ADS  Google Scholar 

  • R. E. Britter. An experiment on turbulence in a density stratified fluid. PhD thesis, Monash Univerity, Australia, 1974.

    Google Scholar 

  • S. Scott Collis, Sanjiva K. Lele, Robert D. Moser, and Michael M. Rogers. The evolution of a plane mixing layer with spanwise nonuniform forcing. Phys. Fluids, 6(1):381–396, 1994.

    Article  MATH  ADS  Google Scholar 

  • Pierre Comte, Marcel Lesieur, and Eric Lamballais. Large-scale and small-scale stirring of vorticity and a passive scalar in a 3-D temporal mixing layer. Phys. Fluids, 4(12): 2761–2778, 1992.

    Article  ADS  Google Scholar 

  • P. F. Crapper and P. F. Linden. The structure of turbulent density interfaces. J. Fluid Mech., 65:45, 1974.

    Article  ADS  Google Scholar 

  • P. E. Dimotakis and G. L. Brown. Mixing layer at high reynolds-number-large-structure dynamics and entrainment. J. Fluid Mech., 78:535, 1976.

    Article  ADS  Google Scholar 

  • D.M. Farmer, E.A. D’Asaro, M.V. Trevorrow, and G.T. Dairiki. Three-dimensional structure in a tidal convergence front. Continental Shelf Research, 15:1649–1673, 1995.

    Article  ADS  Google Scholar 

  • H. J. S. Fernando. Turbulent mixing in stratified fluids. Ann. Rev. Fluid Mech., 23:455–493, 1991.

    Article  ADS  Google Scholar 

  • P. Flament, R. Lumpkin, J. Tournadre, and L. Armi. Vortex pairing in an unstable anticyclonic shear flow: discrete subharmonics of one pendulum day. J. Fluid Mech., 440:401–409, 2001.

    Article  MATH  ADS  Google Scholar 

  • K. S. Gage and W. H. Reid. The stability of thermally stratified plane Poiseuille flow. J. Fluid Mech., 33:21, 1968.

    Article  MATH  ADS  Google Scholar 

  • R. P. Garg, J. H. Ferziger, S. G. Monismith, and J. R. Koseff. Stably stratified turbulent channel flows. I. Stratification regimes and turbulence suppression mechanism. Phys. Fluids, 12:2569, 2000.

    Article  ADS  Google Scholar 

  • T. Gerz, U. Schumann, and S. E. Elghobashi. Direct numerical simulation of stratified homogeneous turbulent shear flows. J. Fluid Mech., 200:563–594, 1989.

    Article  MATH  ADS  Google Scholar 

  • T. Gerz H.-J. Kaltenbach and U. Schumann. Large-eddy simulation of homogeneous turbulence and diffusion in stably stratified shear flow. J. Fluid Mech., 280:1–40, 1994.

    Article  MATH  ADS  Google Scholar 

  • M. A. Hernan and J. Jimenez. Computer-analysis of a high-speed film of the plane turbulent mixing layer. J. Fluid Mech., 119:323, 1982.

    Article  ADS  Google Scholar 

  • S. E. Holt, J. R. Koseff, and J. H. Ferziger. A numerical study of the evolution and structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech., 237: 499–539, 1992.

    Article  MATH  ADS  Google Scholar 

  • E. J. Hopfinger. Turbulence in stratified fluids: A review. J. Geophys. Res., 92:5287–5303, 1987.

    Article  ADS  Google Scholar 

  • L. N. Howard. Note on a paper of John. W. Miles. J. Fluid Mech., 10:509–512, 1961.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • G. N. Ivey and J. Imberger. On the nature of turbulence in a stratified fluid. Part I: the energetics of mixing. J. Phys. Oceanogr., 21:650–658, 1991.

    Article  ADS  Google Scholar 

  • F. G. Jacobitz and S. Sarkar. The effect of nonvertical shear on turbulence in a stably stratified medium. Phys. Fluids, 10(5):1158–1168, 1998.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • F. G. Jacobitz and S. Sarkar. On the Shear Number Effect in Stratified Shear Flow. Theor. Comput. Fluid Dynamics, 13:171–188, 1999a.

    Article  MATH  ADS  Google Scholar 

  • F. G. Jacobitz and S. Sarkar. A direct numerical study of transport and anisotropy in a stably stratified turbulent flow with uniform horizontal shear. Flow, Turbulence and Combustion., 63:343–360, 1999b.

    Article  Google Scholar 

  • F. G. Jacobitz, S. Sarkar, and C. W. VanAtta. Direct numerical simulations of the turbulence evolution in a uniformly sheared and stably stratified flow. J. Fluid Mech., 342:231–261, 1997.

    Article  MATH  ADS  Google Scholar 

  • J.A. Johannessen, R.A. Schuman, G. Digranes, D.R. Lyzenga, C. Wackerman, O.M. Johannessen, and P. W. Vachon. Coastal ocean fronts and eddies imaged with ERS 1 synthetic aperture radar. J. Geophys. Res., 101:6651–6667, 1996.

    Article  ADS  Google Scholar 

  • S. Komori. Turbulence structure in stratified flow. PhD thesis, Kyoto Univerity, Japan, 1980.

    Google Scholar 

  • S. Komori, H. Ueda, F. Ogino, and T. Mizushina. Turbulence structures in stably stratified open-channel flow. J. Fluid Mech., 130:13–26, 1983.

    Article  ADS  Google Scholar 

  • B. Kosovic and J. A. Curry. A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci., 57:1052, 2000.

    Article  ADS  MathSciNet  Google Scholar 

  • M. Lesieur. Turbulence in fluids, 3rd edn. Springer, 1997.

    Google Scholar 

  • R. Lien and T.B. Sanford. Turbulence spectra and local similarity scaling in a strongly stratified oceanic bottom boundary layer. Continental Shelf Research, 24:375–392, 2004.

    Article  ADS  Google Scholar 

  • J. T. Lin and Y. H. Pao. Wakes in stratified fluids. Ann. Rev. Fluid Mech., 11:317–338, 1979.

    Article  ADS  Google Scholar 

  • Y. Lu, R. G. Lueck, and D. Huang. The effect of stable thermal stratification on the stability of viscous parallel flows. J. Phys. Oceanogr., 30:855–867, 2000.

    Article  ADS  Google Scholar 

  • L. Mahrt. Stratified atmospheric boundary layers. Boundary-Layer Meteorology, 90: 375–396, 1999.

    Article  ADS  Google Scholar 

  • P. J. Mason and S. H. Derbyshire. Large eddy simulation of the stably-stratified atmospheric boundary layer. Boundary-Layer Met., 53:117, 1990.

    Article  ADS  Google Scholar 

  • J. W. Miles. On the stability of heterogeneous shear flows. J. Fluid Mech., 10:496–508, 1961.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • M. J. Moore and R. R. Long. An experimental investigation of turbulent stratified shearing flow. J. Fluid Mech., 49:635–655, 1971.

    Article  ADS  Google Scholar 

  • P. Müller, G. Holloway, F. Henyey, and N. Pomphrey. Nonlinear interactions among gravity waves. Rev. Geophys., 24:493–536, 1986.

    Article  ADS  Google Scholar 

  • W. Munk, L. Armi, K. Fischer, and F. Zachariasen. Spirals on the sea. Proc. R. Soc. Lond. A, 456:1217–1280, 2000.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • R. Nagaosa and T. Saito. Turbulence structure and scalar transfer in stably stratified free-surface flows. AIChE J., 43:2393, 1997.

    Article  Google Scholar 

  • K. J. Nygaard and A. Glezer. The effect of phase variations and cross-shear on vortical structures in a plane mixing layer. J. Fluid Mech., 276:21–59, 1994.

    Article  ADS  Google Scholar 

  • Y. Pan and S. Banerjee. A numerical study of free-surface turbulence in channel flow. Phys. Fluids, 7:1649–1664, 1995.

    Article  MATH  ADS  Google Scholar 

  • W. R. Peltier and C. P. Caulfield. Mixing efficiency in stratified shear flows. Ann. Rev. Fluid Mech., 35:135–167, 2003.

    Article  ADS  MathSciNet  Google Scholar 

  • J. F. Piat and E. J. Hopfinger. A boundary layer topped by a density interface. J. Fluid Mech., 113:411, 1981.

    Article  ADS  Google Scholar 

  • P. S. Piccirillo and C. W. VanAtta. The evolution of a uniformly sheared thermally stratified turbulent flow. J. Fluid Mech., 334:61–86, 1997.

    Article  ADS  Google Scholar 

  • J. J. Riley and M. P. Lelong. Fluid motions in the presence of strong stable stratification. Ann. Rev. Fluid Mech., 32:613–657, 2000.

    Article  ADS  MathSciNet  Google Scholar 

  • R. S. Rogallo. Numerical experiments in homogeneous turbulence. NASA TM 81315, 1981.

    Google Scholar 

  • M. M. Rogers, P. Moin, and W. C. Reynolds. The structure and modeling of the hydrodynamic and passive scalar fields in homogeneous turbulent shear flow. PhD thesis, Stanford University, Report TF-25, Mechanical Engr., 1989.

    Google Scholar 

  • M. M. Rogers and R. D. Moser. Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids, 6(2):903–923, 1994.

    Article  MATH  ADS  Google Scholar 

  • J. J. Rohr, E. C. Itsweire, K. N. Helland, and C. W. VanAtta. Growth and decay of turbulence in a stably stratified shear flow. J. Fluid Mech., 195:77–111, 1988.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • E. S. Saiki, C. H. Moeng, and P. P. Sullivan. Large-eddy simulation of the stably-stratified planetary boundary layer. Boundary-Layer Met., 53:117, 1990.

    Article  Google Scholar 

  • U. Schumann and T. Gerz. Turbulent mixing in stably stratified shear flows. J. Appl. Meteor., 34:33, 1995.

    Article  ADS  Google Scholar 

  • L. H. Shih, J. R. Koseff, J. H. Ferziger, and C. R. Rehmann. Scaling and parameterization of stratified homogeneous turbulent shear flow. J. Fluid Mech., 412:1–20, 2000.

    Article  MATH  ADS  Google Scholar 

  • M. T. Stacey, S. G. Monismith, and J. R. Barua. Observations of turbulence in a partially stratified estuary. J. Phys. Oceanogr., 29:1950–1970, 1999.

    Article  ADS  Google Scholar 

  • S. Tavoularis and U. Karnik. Further experiments on the evolution of turbulent stresses and scales in uniformly sheared turbulence. J. Fluid Mech., 204:457–478, 1989.

    Article  ADS  Google Scholar 

  • J. Taylor, S. Sarkar, and V. Armenio. Large eddy simulation of stably stratified open channel flow, submitted, 2005.

    Google Scholar 

  • K. B. Winters and E. A. DAsaro. Diascalar flux and the rate of fluid mixing. J. Fluid Mech., 317:179–193, 1996.

    Article  MATH  ADS  Google Scholar 

  • K. B. Winters, P. N. Lombard, J. J. Riley., and E. A. DAsaro. Available potential energy and mixing in density-stratified fluids. J. Fluid Mech., 289:115–128, 1995.

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 CISM, Udine

About this chapter

Cite this chapter

Sarkar, S. (2005). Prototypical examples of stratified shear flow. In: Armenio, V., Sarkar, S. (eds) Environmental Stratified Flows. CISM International Centre for Mechanical Sciences, vol 479. Springer, Vienna. https://doi.org/10.1007/3-211-38078-7_3

Download citation

  • DOI: https://doi.org/10.1007/3-211-38078-7_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-28408-7

  • Online ISBN: 978-3-211-38078-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics