Skip to main content

Developmental dyslexia, learning and the cerebellum

  • Chapter

Summary

Theoretical frameworks for dyslexia must explain how the well-established phonological deficits and the literacy deficits arise. Our longstanding research programme has led to a distinctive ‘twin level’ framework that proposes, first, that the core deficits are well described in terms of poor skill automaticity. Second, these ‘cognitive level’ symptoms are attributed to abnormal cerebellar function — a ‘brain-level’ analysis. The evidence includes data from behavioural, imaging, neuroanatomical and learning studies. The framework leads to an ‘ontogenetic’ analysis that links cerebellar deficit at birth, via problems in articulation and working memory, to the known phonological, speed and literacy difficulties. Differences in locus of cerebellar impairment, experience and/or links to other brain regions may account for subtypes of dyslexia and possibly other developmental disorders. The automaticity/cerebellar deficit framework provides an explicit demonstration that it is possible to explain motor, speed and phonological deficits within a unified account, integrating previously opposed approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman PT, Dykman RA (1995) Reading-disabled students with and without comorbid arithmetic disability. Dev Neuropsychol 11: 351–371

    Google Scholar 

  • Ackermann H, Hertrich I (2000) The contribution of the cerebellum to speech processing. J Neurolinguist 13: 95–116

    Article  Google Scholar 

  • Ackermann H, Wildgruber D, Daum I, Grodd W (1998) Does the cerebellum contribute to cognitive aspects of speech production? A functional magnetic resonance imaging (fMRI) study in humans. Neurosci Lett 247: 187–190

    Article  PubMed  CAS  Google Scholar 

  • Albus JS (1971) A theory of cerebellar function. Math Biosci 10: 25–61

    Article  Google Scholar 

  • Baddeley AD, Thomson N, Buchanan M (1975) Word length and the structure of short term memory. J Verbal Learn Verbal Behav 14: 575–589

    Article  Google Scholar 

  • Badian NA (1984) Reading disability in an epidemiological context: incidence and environmental correlates. J Learn Disabil 17: 129–136

    PubMed  CAS  Google Scholar 

  • Bates E, Dick F (2002) Language, gesture, and the developing brain. Dev Psychobiol 40:293–310

    Article  PubMed  Google Scholar 

  • Bradley L, Bryant PE (1983) Categorising sounds and learning to read: a causal connection. Nature 301: 419–421

    Article  Google Scholar 

  • Brindley GS (1964) The use made by the cerebellum of the information that it receives from the sense organs. Int Brain Res Org Bull 3: 80

    Google Scholar 

  • Brodal A (1981) The cerebellum. In: Brodal A (ed) Neurological anatomy in relation to clinical medicine. Oxford University Press, Oxford, pp 294–393

    Google Scholar 

  • Brown WE, Eliez S, Menon V, Rumsey JM, White CD, Reiss AL (2001) Preliminary evidence of widespread morphological variations of the brain in dyslexia. Neurology 56: 781–783

    PubMed  CAS  Google Scholar 

  • Davis BL, MacNeilage PF (2000) An embodiment perspective on the acquisition of speech perception. Phonetica 57: 229–241

    Article  PubMed  CAS  Google Scholar 

  • Dean P, Porrill J, Stone JV (2002) Decorrelation control by the cerebellum achieves oculomotor plant compensation in simulated vestibulo-ocular refelx. Proc Roy Soc Lond B 269: 1895–1904

    Article  Google Scholar 

  • Demonet JF, Taylor MJ, Chaix Y (2004) Developmental dyslexia. Lancet 363: 1451–1460

    Article  PubMed  Google Scholar 

  • Denckla MB, Rudel RG (1976) Rapid ‘Automatized’ naming (R.A.N.). Dyslexia differentiated from other learning disabilities. Neuropsychologia 14: 471–479

    Article  PubMed  CAS  Google Scholar 

  • Dow RS, Moruzzi G (1958) The physiology and pathology of the cerebellum. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Eccles JC, Ito M, Szentagothai J (1967) The cerebellum as a neuronal machine. Springer, New York

    Google Scholar 

  • Eckert MA, Leonard CM, Richards TL, Aylward EH, Thomson J, Berninger VW (2003) Anatomical correlates of dyslexia: frontal and cerebellar findings. Brain 126: 482–494

    Article  PubMed  Google Scholar 

  • Eden GF, VanMeter JW, Rumsey JM, Maisog JM, Woods RP, Zeffiro TA (1996) Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature 382:66–69

    Article  PubMed  CAS  Google Scholar 

  • Ejiri K, Masataka N (2001) Co-occurrence of preverbal vocal behavior and motor action in early infancy. Dev Sci 4: 40–48

    Article  Google Scholar 

  • Fabbro F, Moretti R, Bava A (2000) Language impairments in patients with cerebellar lesions. J Neurolinguist 13: 173–188

    Article  Google Scholar 

  • Fawcett AJ, Nicolson RI (1992) Automatisation deficits in balance for dyslexic children. Percept Mot Skills 75: 507–529

    Article  PubMed  CAS  Google Scholar 

  • Fawcett AJ, Nicolson RI (1994) Naming speed in children with dyslexia. J Learning Disabil 27:641–646

    CAS  Google Scholar 

  • Fawcett AJ, Nicolson RI (1995a) Persistent deficits in motor skill for children with dyslexia. J Motor Behav 27: 235–241

    Article  Google Scholar 

  • Fawcett AJ, Nicolson RI (1995b) Persistence of phonological awareness deficits in older children with dyslexia. Reading and Writing 7: 361–376

    Article  Google Scholar 

  • Fawcett AJ, Nicolson RI (1999) Performance of dyslexic children on cerebellar and cognitive tests. J Motor Behav 31: 68–78

    Article  Google Scholar 

  • Fawcett AJ, Nicolson RI, Dean P (1996) Impaired performance of children with dyslexia on a range of cerebellar tasks. Ann Dyslexia 46: 259–283

    Google Scholar 

  • Finch AJ, Nicolson RI, Fawcett AJ (2002) Evidence for a neuroanatomical difference within the olivo-cerebellar pathway of adults with dyslexia. Cortex 38: 529–539

    PubMed  Google Scholar 

  • Frank J, Levinson HN (1973) Dysmetric dyslexia and dyspraxia: hypothesis and study. J Am Acad Child Psychiatry 12: 690–701

    Article  PubMed  CAS  Google Scholar 

  • Fulbright RK, Jenner AR, Mencl WE, Pugh KR, Shaywitz BA, Shaywitz SE, Frost SJ, Skudlarski P, Constable RT, Lacadie CM, Marchione KE, Gore JC (1999) The cerebellum’s role in reading: a functional MR imaging study. Am J Neuroradiol 20: 1925–1930

    PubMed  CAS  Google Scholar 

  • Galaburda A, Livingstone M (1993) Evidence for a magnocellular defect in developmental dyslexia. Ann NY Acad Sci 682: 70–82

    PubMed  CAS  Google Scholar 

  • Galaburda AM, Sherman GF, Rosen GD, Aboitiz F, Geschwind N (1985) Developmental dyslexia — 4 consecutive patients with cortical anomalies. Ann Neurol 18: 222–233

    Article  PubMed  CAS  Google Scholar 

  • Galaburda AM, Menard MT, Rosen GD (1994) Evidence for aberrant auditory anatomy in developmental dyslexia. Proc Natl Acad Sci USA 91: 8010–8013

    PubMed  CAS  Google Scholar 

  • Gathercole SE, Baddeley AD (1989) Evaluation of the role of phonological STM in the development of vocabulary in children: a longitudinal study. J Memory Language 28: 200–213

    Article  Google Scholar 

  • Glickstein M (1993) Motor skills but not cognitive tasks. Trends Neurosci 16: 450–451

    Article  PubMed  CAS  Google Scholar 

  • Green JR, Moore CA, Higashikawa M, Steeve RW (2000) The physiologic development of speech motor control: lip and jaw coordination. J Speech Language Hearing Res 43: 239–255

    CAS  Google Scholar 

  • Holmes G (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40:461–535

    Google Scholar 

  • Holmes G (1922) Clinical symptoms of cerebellar disease and their interpretation. Lancet 1:1177–1237

    Google Scholar 

  • Holmes G (1939) The cerebellum of man. Brain 62: 1–30

    Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven Press, New York

    Google Scholar 

  • Ito M (1990) A new physiological concept on cerebellum. Rev Neurol (Paris) 146: 564–569

    PubMed  CAS  Google Scholar 

  • Ivry RB, Keele SW (1989) Timing functions of the cerebellum. J Cogn Neurosci 1: 136–152

    Article  Google Scholar 

  • Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RSJ, Passingham RE (1994) Motor sequence learning — a study with Positron Emission Tomography. J Neurosci 14: 3775–3790

    PubMed  CAS  Google Scholar 

  • Jorm AF, Share DL, McLean R, Matthews D (1986) Cognitive factors at school entry predictive of specific reading retardation and general reading backwardness: a research note. J Child Psychol Psychiatry Allied Disciplines 27: 45–54

    CAS  Google Scholar 

  • Justus TC, Ivry RB (2001) The cognitive neuropsychology of the cerebellum. Int Rev Psychiatry 13: 276–282

    Article  Google Scholar 

  • Kawato M, Gomi H (1992) The cerebellum and VOR/OKR learning models. Trends Neurosci 15: 445–452

    Article  PubMed  CAS  Google Scholar 

  • Leiner HC, Leiner AL, Dow RS (1989) Reappraising the cerebellum: what does the hindbrain contribute to the forebrain. Behav Neurosci 103: 998–1008

    Article  PubMed  CAS  Google Scholar 

  • Leiner HC, Leiner AL, Dow RS (1991) The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res 44: 113–128

    PubMed  CAS  Google Scholar 

  • Leiner HC, Leiner AL, Dow RS (1993) Cognitive and language functions of the human cerebellum. Trends Neurosci 16: 444–447

    Article  PubMed  CAS  Google Scholar 

  • Leonard CM (2001) Imaging brain structure in children: differentiating language disability and reading disability. Learning Disabil Quart 24: 158–176

    Article  Google Scholar 

  • Levinson HN (1988) The cerebellar-vestibular basis of learning disabilities in children, adolescents and adults: hypothesis and study. Percept Mot Skills 67: 983–1006

    PubMed  CAS  Google Scholar 

  • Livingstone MS, Rosen GD, Drislane FW, Galaburda AM (1991) Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proc Natl Acad Sci USA 88:7943–7947

    PubMed  CAS  Google Scholar 

  • Lyytinen H, Ahonen T, Eklund K, Guttorm TK, Laakso ML, Leinonen S, Leppanan PHT, Lyytinen P, Poikkeus AM, Puolakanaho A, Richardson U, Viholainen H (2001) Developmental pathways of children with and without familial risk for dyslexia during the first years of life. Dev Neuropsychol 20: 535–554

    Article  PubMed  CAS  Google Scholar 

  • MacNeilage PF, Davis BL (2001) Motor mechanisms in speech ontogeny: phylogenetic, neurobiological and linguistic implications. Curr Opin Neurobiol 11: 696–700

    Article  PubMed  CAS  Google Scholar 

  • Marien P, Engelborghs S, Fabbro F, De Deyn PP (2001) The lateralized linguistic cerebellum: a review and a new hypothesis. Brain Language 79: 580–600

    Article  CAS  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol (Lond) 202: 437–470

    PubMed  CAS  Google Scholar 

  • Martlew M (1992) Handwriting and spelling — dyslexic childrens abilities compared with children of the same chronological age and younger children of the same spelling level. Br J Educ Psychol 62: 375–390

    PubMed  Google Scholar 

  • Morton J, Frith U (1995) Causal modelling: a structural approach to developmental psychopathology. In: Cicchetti D (ed) Manual of developmental psychopathology. Wiley, New York, pp 274–298

    Google Scholar 

  • Newell A, Rosenbloom PS (1981) Mechanisms of skill acquisition and the law of practice. In: Anderson JR (ed) Cognitive skills and their acquisition. Lawrence Erlbaum, Hillsdale, NJ

    Google Scholar 

  • Nicolson RI (2002) The dyslexia ecosystem. Dyslexia: Int J Res Pract 8: 55–66

    Article  Google Scholar 

  • Nicolson RI, Fawcett AJ (1990) Automaticity: a new framework for dyslexia research? Cognition 35: 159–182

    Article  PubMed  CAS  Google Scholar 

  • Nicolson RI, Fawcett AJ (1994) Reaction times and dyslexia. Quart J Exp Psychol 47A: 29–48

    Google Scholar 

  • Nicolson RI, Fawcett AJ (1996) The dyslexia early screening test. The Psychological Corporation, London

    Google Scholar 

  • Nicolson RI, Fawcett AJ (2000) Long-term learning in dyslexic children. Eur J Cogn Psychol 12:357–393

    Article  Google Scholar 

  • Nicolson RI, Fawcett AJ, Dean P (1995) Time-estimation deficits in developmental dyslexia — evidence for cerebellar involvement. Proc Roy Soc Lond Series B-Biol Sci 259: 43–47

    CAS  Google Scholar 

  • Nicolson RI, Fawcett AJ, Dean P (2001) Developmental dyslexia: the cerebellar deficit hypothesis. Trends Neurosci 24: 508–511

    Article  PubMed  CAS  Google Scholar 

  • Passingham RE (1975) Changes in the size and organization of the brain in man and his ancestors. Brain Behav Evol 11: 73–90

    PubMed  CAS  Google Scholar 

  • Rae C, Lee MA, Dixon RM, Blamire AM, Thompson CH, Styles P, Talcott J, Richardson AJ, Stein JF (1998) Metabolic abnormalities in developmental dyslexia detected by H-1 magnetic resonance spectroscopy. Lancet 351: 1849–1852

    Article  PubMed  CAS  Google Scholar 

  • Rae C, Harasty JA, Dzendrowskyj TE, Talcott JB, Simpson JM, Blamire AM, Dixon RM, Lee MA, Thompson CH, Styles P, Richardson AJ, Stein JF (2002) Cerebellar morphology in developmental dyslexia. Neuropsychologia 40: 1285–1292

    Article  PubMed  Google Scholar 

  • Rudel RG (1985) The definition of dyslexia: language and motor deficits. In: Duffy FH, Geschwind N (eds) Dyslexia: a neuroscientific approach to clinical evaluation. Little Brown, Boston

    Google Scholar 

  • Shankweiler D, Crain S, Katz L, Fowler AE, Liberman AM, Brady SA, Thornton R, Lundquist E, Dreyer L, Fletcher JM, Stuebing KK, Shaywitz SE, Shaywitz BA (1995) Cognitive profiles of reading-disabled children — comparison of language-skills in phonology, morphology, and syntax. Psychol Sci 6: 149–156

    Article  Google Scholar 

  • Silveri MC, Misciagna S (2000) Language, memory, and the cerebellum. J Neurolinguist 13:129–143

    Article  Google Scholar 

  • Snowling M (1987) Dyslexia: a cognitive developmental perspective. Blackwell, Oxford

    Google Scholar 

  • Snowling M, Hulme C (1994) The development of phonological skills. Phil Transact Roy Soc Lond Series B-Biol Sci 346: 21–27

    CAS  Google Scholar 

  • Stanovich KE (1988) Explaining the differences between the dyslexic and the garden-variety poor reader: the phonological-core variable-difference model. J Learn Disabil 21: 590–604

    Article  PubMed  CAS  Google Scholar 

  • Stein J, Walsh V (1997) The magnocellular deficit theory of dyslexia — reply. Trends Neurosci 20: 398

    Article  CAS  Google Scholar 

  • Stein JF, Glickstein M (1992) Role of the cerebellum in visual guidance of movement. Physiol Rev 72: 972–1017

    Google Scholar 

  • Thach WT (1996) On the specific role of the cerebellum in motor learning and cognition: clues from PET activation and lesion studies in man. Behav Brain Sci 19: 411–431

    Google Scholar 

  • Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16: 765–780

    Article  PubMed  Google Scholar 

  • Vellutino FR (1979) Dyslexia: theory and research. MIT Press, Cambridge

    Google Scholar 

  • Vellutino FR, Fletcher JM, Snowling M, Scanlon DM (2004) Specific reading disability (dyslexia): what have we learned in the past four decades? J Child Psychol Psychiatry 45: 2–40

    Article  PubMed  Google Scholar 

  • Wang VY, Zoghbi HY (2001) Genetic regulation of cerebellar development. Nature Rev Neurosci 2: 484–491

    Article  CAS  Google Scholar 

  • Wolf M, Bowers PG (1999) The double-deficit hypothesis for the developmental dyslexias. J Educ Psychol 91: 415–438

    Article  Google Scholar 

  • Wolff PH, Michel GF, Ovrut M (1990) Rate variables and automatized naming in developmental dyslexia. Brain Language 39: 556–575

    Article  CAS  Google Scholar 

  • World Federation of Neurology (1968) Report of research group on dyslexia and world illiteracy. WFN, Dallas

    Google Scholar 

  • Yap R, Vanderleij A (1993) Word-processing in dyslexics — an automatic decoding deficit. Reading Writing 5: 261–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag/Wien

About this chapter

Cite this chapter

Nicolson, R.I., Fawcett, A.J. (2005). Developmental dyslexia, learning and the cerebellum. In: Fleischhacker, W.W., Brooks, D.J. (eds) Neurodevelopmental Disorders. Springer, Vienna. https://doi.org/10.1007/3-211-31222-6_2

Download citation

  • DOI: https://doi.org/10.1007/3-211-31222-6_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-26291-7

  • Online ISBN: 978-3-211-31222-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics